
Master QLMN Pascal Scholl
Experimental quantum computing pascal.scholl@pasqal.com

Lecture 5 - Quantum algorithms:
focus on Shor algorithm

January 28th 2026

This lecture introduces the algorithms that can be implemented on a quantum com-
puter and that enable an improvement in performances with respect to their classical
counterparts.

Such algorithms can be separated into two subgroups:

• Algorithms with exponential speedups: These algorithms are often seen as
the most promising at the mathematical level, as they allow to address NP-hard
problems in polynomial time. However, they often require extremely powerful
quantum computers, and there is a very small number of applications that belong
to this class: algebraic and cryptography. We will address this category in this
lecture, focusing on the most notorious example: Shor algorithm.

• Algorithms with (super)polynomial speedups: These algorithms might seem
less interesting at the mathematical level, but have proven to be more near-term
friendly for practical applications, and their range of potential application is much
larger than the first category. In this class, we find algorithms such as Grover
which allows to perform optimization tasks, quantum simulation, and machine
learning / data treatment. These will be addressed in Lecture 6.

We note that quantum applications are a (strongly evolving) field of research: every
year new applications, and optimization of their implementation on quantum comput-
ers (inducing a change in the speedup) are discovered.

We will first globally introduce the algorithms of the first group, then dive into the
details of Shor’s algorithm. We will perform the algorithm end-to-end, highlighting
both the classical part of the algorithm, and the quantum part. We will discuss the
quantum circuits which need to be implemented on a quantum computer in order to
execute the algorithm. We will ground the explanations on real examples. We will in
particular detail the iconic sub-routines of Shor’s algorithm which are used in many
algorithms: the Quantum Fourier Transform (QFT), and the modular exponentiation.
We will finally detail the origin of the exponential gain of this algorithm.

1 Quantum algorithms with exponential speedups

The known algorithms which have an exponential speedup all share the same idea. If
we are given a periodic function, even when the structure of the periodicity is quite
complicated, we can often use a quantum algorithm to determine the period efficiently.

1

The general problem which defines a broad framework for these questions can be math-
ematically expressed in the language of group theory as follows:

• Let f be a function from a finitely generated group G to a finite set X such that
f is constant on the cosets of a subgroup K, and distinct on each coset. Given a
quantum black box for performing the unitary transform U |g⟩ |h⟩ = |g⟩ |h⊕ f(g)⟩,
for g ∈ G, h ∈ X, and ⊕ an appropriately chosen binary operation on X, find a
generating set for K.

In (hopefully) simpler terms, given a black-box function f which we know have some
kind of unknown periodicity (meaning that the function gives the same value to ele-
ments related by a hidden symmetry), the quantum computer can discover that hidden
periodicity very efficiently.

A list of such algorithms is provided in Figure 1. In particular, we find the Deutsch
algorithm which was introduced in Lecture 1. We observe that there are not many
known algorithms belonging to this category, and finding others in the same spirit is an
active field of research.

We next describe the most famous algorithm belonging to this category with the
most impactful known application: finding prime numbers of integers N .

2 The classical part of Shor’s algorithm

2.1 Algorithm description

As mentioned above, the aim of Shor’s algorithm is to factorize a given number N . For
the sake of simplicity and to connect the algorithm to cryptography, we will assume that
N = pq with p and q two prime numbers. The algorithm works as follows:

1. Select a random number 1 < a < N .

2. Check whether the greatest common denominator is one: gcd(a,N) = 1. If not,
the problem is solved without the need of the rest of the algorithm (since N is a
large number, it is highly unlikely).

3. Period finding Find the smallest number r for which ar ≡ 1 [N]. This is where
the quantum computer is used (the period finding algorithm is present in Figure 1):
it will find the value of r that satisfies this relationship.

4. Classical post-processing Having obtained ar ≡ 1 [N] from the quantum pro-
cessor, we can rewrite (ar/2−1)(ar/2+1) ≡ 0 [N], meaning that (ar/2−1)(ar/2+1)
is divisible by N : we’re getting close to finding the prime factors. Further classi-
cal post-processing enables to get for example (ar/2 − 1) → p and (ar/2 + 1) → q
(detailed below). However, there is a ∼ 1/2 probability to get (ar/2 − 1) → 1
and (ar/2 − 1) → N , and thus we do not gain any information. In this case, the
algorithm failed.

2

Figure 1: Adapted from [1]. List of typical algorithms with exponential speedups. All
of them deal with hidden subgroup problems, where the function f maps from the group
G to the finite set X, and is promised to be constant on cosets of the hidden subgroup
K. ZN represents the set (0, 1, ..., N −1) in this table, and Z is the integers. The solved
problem is to find K, given a black box function f .

3

5. If the algorithm failed, another a is chosen and the algorithm is restarted.

We detail below the two non-trivial steps: period finding and classical post-processing.

2.2 Period finding

We provide an intuition of why ar ≡ 1[N] is always true when gcd(a,N) = 1. If
gcd(a,N) = 1, then gcd(aj, N) = 1 for any value of j. This means that aj ≡ l [N] with
l ̸= 0. In particular, the space defining all the possible aj is infinite, whereas the space
of l is finite (contains N−2 possible values). This means that there exist i > j for which
ai ≡ aj [N]. This can be rewritten as: aj(ai−j − 1) ≡ 0 [N]. Since gcd(aj, N) = 1, the
aj term can be dropped from the congruence. We therefore obtain (ai−j − 1) ≡ 0 [N],
and by stating i − j = r, we get ar ≡ 1 [N]. This result is rigorously demonstrated in
Euler’s theorem.

Let’s observe what period finding means in practice, and get an intuition as to why
it helps finding the prime factors. Assuming N = 15 and a = 2, we compute the powers
of a modulo N :

20 ≡ 1 [15]

21 ≡ 2 [15]

22 ≡ 4 [15]

23 ≡ 8 [15]

24 ≡ 1 [15]

25 ≡ 2 [15]

26 ≡ 4 [15]

27 ≡ 8 [15]

28 ≡ 1 [15]

We observe that the result is periodic! The period is here r = 4, for which we have
24 ≡ 1 [15]. Since for any non trivial [a,N], a0 = 1 ≡ 1 [N], the first power of a for
which one gets ar ≡ 1 [N] sets the period. The fact that we obtain a periodic result
can be understood by computing a2r = ar × ar ≡ 1 × 1 [N] ≡ 1 [N]. Euler rigorously
demonstrated that this phenomenon happens for any [a,N] as long as gcd(a,N) = 1.

This order finding task is in the end pretty simple, and is guaranteed to converge
thanks to Euler’s theorem: one just needs to compute every successive powers of a until
finding ar ≡ 1 [N]. However, the number of steps is proportional to N . This can be
understood by the fact that, in order to find r, one needs to compute ar with r > 0
exactly r times. The exact value of r depends on a, but it can be demonstrated that r
increases linearly with N .

4

2.3 Classical post-processing

Assuming that the quantum processor found r for which ar ≡ 1 [N], we can rewrite
(ar/2 − 1)(ar/2 + 1) ≡ 0 [N], meaning that (ar/2 − 1)(ar/2 + 1) is divisible by N , which
means that (ar/2 − 1)(ar/2 + 1) is divisible by p and q. Because p and q are prime
numbers, p and q are divisible either by ar/2− 1, or ar/2+1 (known as Euclid’s lemma).
This last point is true only because p and q are prime numbers and N = pq. For generic
N Shor’s algorithm still works, even though more steps are required.

This means that:

ar/2 ± 1 ≡ 0 [p] (1)

ar/2 ± 1 ≡ 0 [q] (2)

where the ± here accounts for the situation described above: p is divisible by ar/2 − 1
or ar/2 + 1. There are then four possibilities, out of which only two allow to find the
prime numbers:

ar/2 + 1 ≡ 0 [p] and ar/2 + 1 ≡ 0 [q] → failure (3)

ar/2 + 1 ≡ 0 [p] and ar/2 − 1 ≡ 0 [q] → success (4)

ar/2 − 1 ≡ 0 [p] and ar/2 + 1 ≡ 0 [q] → success (5)

ar/2 − 1 ≡ 0 [p] and ar/2 − 1 ≡ 0 [q] → failure (6)

(7)

We describe these two situations:

• Success situation Assuming we are in the second situation described above,
ar/2+1 divides p but not q. This means that gcd(ar/2+1, N) = p, and gcd(ar/2−
1, N) = q.

• Failure situation In the failure situations, ar/2 ± 1 divides both p and q, thus
divides N , and therefore gcd(ar/2 ± 1, N) = 1 or N : we did not find the prime
factors. The failure situation happens when ar/2 ≡ ±1 [N].

The strength of Shor’s algorithm relies on finding the correct r for which ar/2 ± 1
divides only one of the prime factors, which happens when:

1. r/2 is an integer (r is even)

2. ar/2 ̸≡ ±1 [N]

These two conditions only rely on the initial choice of a.
We can wonder what is the probability for these two conditions to be valid for a

given value of a. It can be demonstrated that ar/2 ̸≡ ±1 [N] happens with probability
≥ 1/2, and r being even happens with probability ≥ 1/2. Combined, we obtain a
typical probability for Shor’s algorithm to be successful ≥ 1/4. Crucially, the success
probability does not depend on N , and therefore on the complexity theory point of view,
these failures cases have a negligible impact. In practice, this means that the quantum
processor will need to compute ar ≡ 1 [N] a few times before the algorithm finds the
prime numbers.

5

2.4 Classical part of Shor algorithm on a simple example

We take an example to illustrate the key concepts described above. We try to factorize
into prime numbers N = 21, where p = 3 and q = 7.

We first illustrate a success situation. We choose a = 2, and find that 26 = 64 ≡
1 [21]. Thus r = 6 and:

ar/2 = 8 ≡ 3 [21] (8)

meaning that we are in a success situation. We compute the two quantities which divide
p and q:

ar/2 − 1 = 7 (9)

ar/2 + 1 = 9 (10)

In this situation, ar/2− 1 only divides q and not p: this is why the algorithm works. We
then find the prime numbers:

gcd(ar/2 + 1, N) = 3 (11)

gcd(ar/2 − 1, N) = 7 (12)

We now illustrate a failure situation. We choose a = 20, and try to find ar ≡ 1[21]:

201 = 20 ≡ −1 [21] (13)

202 = 400 ≡ 1 [21] (14)

So the order is r = 2, which is even. However, 201 ≡ −1 [21], meaning that we expect
to be in a failure situation. We confirm this by computing:

ar/2 − 1 = 19 (15)

ar/2 + 1 = 21 (16)

and find:

gcd(ar/2 + 1, N) = 1 (17)

gcd(ar/2 − 1, N) = 21 (18)

as expected.
Exercise 1. Apply Shor’s algorithm to N = 15, using a = 2, following the same struc-
ture as what is done above.

3 The quantum part of Shor’s algorithm

Having described the classical part of Shor’s algorithm, we now discuss the part where
the quantum processor is used. As previously discussed, for a given 1 < a < N , the
quantum processor is able to find r such that: ar ≡ 1[N].

In the following, we will perform a very important basis change to describe the
quantum states which are used throughout Shor’s algorithm, introduced in Lecture 1,
Section 4. We introduce the notation |x⟩, where x =

∑2n−1
j=0 xj2

j, xj ∈ 0, 1 is defined
as being an integer that is described in the binary basis. For example, for x = 5,
|5⟩ ≡ |101⟩.

6

3.1 Quantum algorithm description

We first give an overview of what the quantum processor does, and next dive into
explaining each key parts. The algorithm uses two quantum registers:

• The control register, which is composed of n qubits. It is in this register that
the information about r will be extracted.

• The work register, which is composed of m qubits. It is used to enable r to be
extracted from the control register.

The quantum operations are performed as follows:

1. Initialization., Starting from the initial state |0⟩⊗n |0⟩⊗m, apply H⊗n on the
control register, and one X gate on the mth qubit in the work register:

|0⟩⊗n |0⟩⊗m → 1√
2n

[(|0⟩+|1⟩)⊗ ...⊗(|0⟩+|1⟩)]⊗|00...1⟩ = 1√
2n

2n−1∑
x=0

|x⟩⊗|1⟩ (19)

where we now use the binary basis to express the states of the two registers. We
here use the superposition to ”test” all the possible numbers at the same time.

2. Modular exponentiation function (MEF). Conditionally apply the unitary
operation U that implements the modular exponentiation function ax [N] on the
work register whenever the control register is in state |x⟩:

1√
2n

2n−1∑
x=0

|x⟩ ⊗ |1⟩ → 1√
2n

2n−1∑
x=0

|x⟩ |ax [N]⟩ (20)

This steps generates entanglement between the two registers. As ax [N] < N , this
number can be well represented if 2m ≥ N , and therefore the number of qubits
that are required in the work register are m ≥ log2(N).

3. Projective measurement on the work register. We note that this step is
not necessary in practice, but eases a lot the understanding of the algorithm.
Assuming that the work register is projected onto |ax ≡ b [N]⟩, we obtain:

1√
2n

2n−1∑
x=0

|x⟩ |ax [N]⟩ → 1√
M

M−1∑
k=0

|x0 + kr⟩ (21)

The sum runs over all x values for which |ax ≡ b [N]⟩. Since ax+r ≡ ax [N], we
obtain that the sum runs over the states which are periodic in r, and that can
be written in the form |x0 + kr⟩ with k an integer. The sum runs over M which
represents all the possible states within the control register (2n states) that satisfy
x = x0 + kr. As 2n ≫ r and x0 < r, the number of possible states is M ≃ 2n/r.
Thanks to the entanglement between the two registers, the states in the control
register are now encoding r! This means that if we would measure the control
register many times, we would obtain various x values, where the spacing between

7

these obtained x values would tell us the value of r. However, we would need to
sample N times the wavefunction, and therefore we would not get any speedup as
compared to classical period finding. An important remark that we can make here
is that r is encoded in the periodicity of states. In order to make the algorithm
efficient, we need to find an operation that converts this periodicity in the state
domain into frequency peaks in an equivalent ”state-frequency” domain. Thank-
fully, such operation exists, is unique to quantum mechanics (as it requires the
ability to make the states interfere), and is called the quantum Fourier transform.

4. Quantum Fourier Transform (QFT). As for classical signals, the QFT enables
to convert periodicity of states into ”state-frequency” peaks:

1√
M

M−1∑
k=0

|x0 + kr⟩ → 1√
2nM

M−1∑
k=0

2n−1∑
y=0

e2iπ(x0+kr)y/2n |y⟩

=
1√
2nM

2n−1∑
y=0

e2iπx0y/2n
M−1∑
k=0

e2iπkry/2
n |y⟩

After QFT, the 2n states are present in the wavefunction again (as after the ini-
tialization). While previously the |x⟩ states were encoding all the possible integers
from 0 to N , the |y⟩ states now encode the frequencies that were stored into the
coherent superposition of the |x⟩ states. In particular, as in classical Fourier trans-
form, the pre-factor in front of the |y⟩ states is representative of the strength of the
periodicity y within the superposition before QFT. Since the state before QFT is
a superposition of states |x0 + kr⟩, we can qualitatively understand that the fre-
quency r should get out of the QFT. This can be seen in the above expression: the
inner sum running over k is a finite geometric series, and is therefore equal to M
only if s = ry/2n is an integer. This means that the states |y⟩ with high amplitude
will be the ones for which y = s2n/r, with s an integer. Since y is bounded by
2n − 1, the maximum value of s is r − 1. We can therefore re-write the output
wavefunction considering only these states:

1√
2nM

2n−1∑
y=0

e2iπx0y/2n
M−1∑
k=0

e2iπkry/2
n |y⟩ ≃ M√

2nM

r−1∑
s=0

e2iπx0s/r |s2n/r⟩

≃ 1√
r

r−1∑
s=0

e2iπx0s/r |s2n/r⟩

where we used M ≃ 2n/r. We have here assumed that s2n/r is always an integer,
which simplifies the calculation of the wavefunction. This is in practice not true
(and therefore the geometric sum does not exactly equal to M). The selected
states by the QFT are therefore |y⟩ = |round(s2n/r)⟩, and the closer s2n/r is from
an integer, the larger the amplitude is.

5. Measurement of the control register and continued fraction expansion.
The quantum processor therefore outputs a state |y⟩ = |round(s2n/r)⟩ with 0 ≤

8

s ≤ r − 1. This means that we obtain a result close to the ratio y/2n = s/r in
which both s and r are unknown: a last step is required to find r... meaning that
we do not get r directly from the quantum processor. First, the output state is not
exactly s2n/r. However, as |y−s2n/r| ≤ 1/2, we obtain that |y/2n−s/r| ≤ 1/2n+1.
By choosing a sufficiently large n, the rounding has a negligible impact on finding
r. Second, we need to compute r from knowing y/2n ≃ s/r with an unknown
(but bounded) s. In order to tackle this issue, the key concept is not to look for
the value of s, but rather to observe that we have the ratio of two integers (y and
2n) which is (almost) equal to the ratio of two other integers (s and r). Setting
a = y/2n, we perform the continued fraction expansion of a, which takes the form:

a = a0 +
1

a1 +
1

a2+
1

a3+...

(22)

where ai are the expansion terms of x. It can be demonstrated that if (1) a satisfies
|a−s/r| < 1/(2r2) and (2) gcd(s, r) = 1, then it is guaranteed that the continuous
fraction expansion of a will at some point be equal to s/r. As discussed above, we
know that |a − s/r| ≤ 1/2n+1. This means that we need 2n > r2, r is unknown
but r < N , and therefore we need 2n > N2. This last point sets the number of
qubits that are required in the control register: we need n > 2 log2(N) qubits.
The condition gcd(s, r) = 1 has typically a probability of 1/2 to be true, and
therefore the quantum part of Shor’s algorithm can also fail (the probability does
not depend on N , and in practice even if gcd(s, r) ̸= 1 there is still a chance to
find r). By successively checking the obtained fraction each time we add a term
and verifying if ar ≡ 1 [N], we are sure to obtain the correct r.

From the above results, we can bound the number of qubits that are required in
order for Shor to function: n > 2 log2(N) in the control register and m ≥ log2(N) in
the work register.

At the quantum circuit level, the algorithm has only 3 steps, described in Figure 2:

1. A global Hadamard gate on the control register to prepare a superposition of all
possible states.

2. The modular exponentiation function, implemented via quantum addition, which
entangles the control and the work register, enabling to highlight states with period
r in the control register.

3. An inverse quantum Fourier Transform (QFT) applied to the control register,
enabling to convert this periodicity of states into states that directly encode r
within the states.

These 3 quantum operations are found in many applications. We next describe how to
implement the modular exponentiation via quantum addition and the QFT.

9

Figure 2: Adapted from [1]. High-level quantum circuit to perform the period finding:
a global Hadamard gate, the modular exponentiation, and the inverse quantum fourier
transform

3.2 Shor algorithm on an example

We now exemplify the algorithm on an example which explicitly shows the impact of
each step. We want to factorize N = 21 using a = 2. As previously discussed, we know
that we should find r = 6.

Since we know r, we can adapt the size of the control register in order to match the
condition 2n > r2. We choose to work with 6 qubits in the control register.

1. Initialization. We first apply the global Hadamard on the control register and
one X gate on the work register:

|0⟩⊗6 |0⟩⊗m → 1√
64

63∑
x=0

|x⟩ |1⟩ (23)

2. Modular exponentiation function (MEF). We then apply the modular expo-
nentiation function to get |ψMEF⟩:

1√
64

63∑
x=0

|x⟩ ⊗ |1⟩ → 1√
64

63∑
x=0

|x⟩ |2x [21]⟩

|ψMEF⟩ =
1√
64

[|0⟩ |1⟩+ |1⟩ |2⟩+ |2⟩ |4⟩+ |3⟩ |8⟩

+ |4⟩ |16⟩+ |5⟩ |11⟩+ |6⟩ |1⟩+ |7⟩ |2⟩+ |8⟩ |4⟩+ ...]

We see the 2x [21] terms appearing in the work register, associated to x in the
control register. We observe the 6-periodicity in the work register, which means
that we can factorize them and rewrite the state as:

|ψMEF⟩ =
1√
64

[(|0⟩+ |6⟩+ |12⟩+ |18⟩+ |24⟩+ ...)⊗ |1⟩

+(|1⟩+ |7⟩+ |13⟩+ |19⟩+ |25⟩+ ...)⊗ |2⟩+ ...]

We now see more clearly the period appearing in the control register.

10

3. Projective measurement on the work register. We apply the measurement
on the work register. The measurement will select one of the possible work state,
but we see that this only shifts the control register by a constant value which
does not matter for finding the period, hence this measurement is not necessary.
For the sake of simplicity we will here perform this measurement, assuming we
measure |1⟩ in the work register:

|ψc⟩ =
1√
11

(|0⟩+ |6⟩+ |12⟩+ |18⟩+ |24⟩+ |30⟩+ |36⟩+ |42⟩+ |48⟩+ |54⟩+ |60⟩)

=
1√
11

10∑
k=0

|6k⟩

As previously discussed, we could directly sample from this state. However, we
have here 11 possible states, meaning that we would need to perform the quantum
circuit many times to extract the correct period (in reality you do not know what
is r, so if you sample, you need to make sure you’re not missing a state...).

4. Quantum Fourier Transform (QFT). We perform the QFT on |ψc⟩:

|ψQFT⟩ =
1√
11

63∑
y=0

1√
64

10∑
k=0

ei2π6ky/64 |y⟩ = 1√
11 · 64

63∑
y=0

1− e2iπ66y/64

1− e2iπ6y/64
|y⟩ (24)

Where we used the geometric sum property
∑N

k ω
k = (1 − ωN)/(1 − ω). The

geometric series value peaks for 6y/64 = s being an integer, meaning for y ≃
s × 10.667. We observe that the peak value is never obtained for y being an
integer, meaning that the inner sum never gets a maximum value (except y = 0
where the sum equals 11). The state can be rewritten as:

|ψQFT⟩ =
1√

11 · 63
[11 |0⟩+ 1− e2iπ66/64

1− e2iπ6/64
|1⟩+ 1− e2iπ132/64

1− e2iπ12/64
|2⟩+ ...]

The largest terms happen for y ≃ s × 10.667, which gives y = 0, 11, 21, 32, 43, 53
and we therefore simplify the wavefunction:

|ψQFT⟩ ≃
1√

11 · 63
[11 |0⟩+ 1− e2iπ66·11/64

1− e2iπ6·11/64
|11⟩+ 1− e2iπ66·21/64

1− e2iπ6·21/64
|21⟩+ ...]

We now obtain 6 states in |ψQFT⟩, which are not the same as prior the QFT.

5. Measurement of the control register and continued fraction expansion.
Upon applying measurement, we get the following probability densities:

|⟨0 |ψQFT⟩ |2 = 11/63 ≃ 0.175

|⟨11 |ψQFT⟩ |2 ≃ 0.012

|⟨21 |ψQFT⟩ |2 ≃ 0.145

|⟨32 |ψQFT⟩ |2 ≃ 0.175

|⟨43 |ψQFT⟩ |2 ≃ 0.145

|⟨53 |ψQFT⟩ |2 ≃ 0.012

11

We observe that the most probable state which is interesting is |32⟩, for which the
geometric series value is maximal. Let’s assume that the processor outputs |11⟩
(highly unlikely, but can still happen). We then compute the ratio a = 11/64 ≃
0.172, which is not far away from 1/6 with s = 1 and r = 6. We compute the
continued fraction expansion:

a = 0 +
1

5 + 1
1+ 1

4+1
2

(25)

We can look at the value of a of the successive expansion orders k, look at the
denominator of the fraction, and check if 2r ≡ 1 [21]:

Order 1: a =
1

5
→ r = 5 → 25 ≡ 11 [21] → Not the correct value of r

Order 2: a =
1

5 + 1
1

=
1

6
→ r = 6 → 26 ≡ 1 [21] → We found the value of r !

Order 3: a =
1

5 + 1
1+ 1

4

=
5

29

Exercise 2. Apply Shor’s algorithm to N = 15, using a = 2, following the same struc-
ture as what is done above.

3.3 Modular exponentiation using quantum addition

We here focus on detailing the modular exponentiation. As described above, we look
for an unitary U which performs the following:

U : |x⟩ |1⟩ → |x⟩ |ax [N]⟩ (26)

The core sub-routine which is used in this part of the algorithm is quantum addition. We
first describe this operation, then explain how it is used in the modular exponentiation.

3.3.1 Quantum addition

Addition can be seen as the most basic computing capability, and it is therefore natural
to introduce how it works in a quantum computer. As in classical computing, addition
will be performed in the binary basis. Assuming two states |y⟩ = |ym−1...y0⟩ and |r⟩ =
|rm−1...r0⟩, we will describe the unitary that performs the transformation:

|y⟩ |r⟩ → |y⟩ |r + y⟩ (27)

meaning that we add two quantum states, and store the sum on the second state. The
quantum adder relies on quantum gates, in a similar fashion to classical addition. The

12

used method is similar to the method we learned when we were kids to perform additions.
Suppose I want to add (in binary basis) |y⟩ = |110⟩ and |r⟩ = |001⟩:

110

+001

=111

where we add each qubit composing y and r successively. Therefore, in order to obtain
a quantum adder, we engineer an operation such that, on each qubit :

yi|ri → yi + ri

0|0 → 0

0|1 → 1

1|0 → 1

1|1 → 0

This situation is obtained when we implement a CNOT gate: the state of the qubit |ri⟩
is flipped conditioned on |yi⟩ = 1. We will use the notation CNOT(yi → ri) to describe
a CNOT where |yi⟩ is the control qubit, and |ri⟩ is the target qubit.

There is still one situation that we need to handle: if the two bits are 1, then we have
to report a carry-over to the next bit. In order to perform such operation in a unitary
fashion, we need to add an extra carry-over state |c⟩ = |cn−1...c0⟩ which will store the
value of the carry-over. Assuming that ci−1 = 0, the situation we want to end up in is
therefore:

yi|ri → ci

0|0 → 0

0|1 → 0

1|0 → 0

1|1 → 1

we therefore want |ci⟩ = 1 when |yi⟩ = |ri⟩ = 1: this is a Toffoli gate, and we use the
notation Toffoli(yi, ri → ci) to describe it. In order to add the carry over to the sum, we
need to perform the operation yi + ri + ci, which is done by applying a CNOT(yi → ri)
(as described above), and CNOT(ci → ri) (adds the carry-over).

In the above situation, we assumed that ci−1 = 0. In order to take into account
the two possible values of ci−1, we need to add 2 Toffoli gates: Toffoli(yi, ci−1 → ci)
and Toffoli(ri, ci−1 → ci). Therefore, performing the addition for one row of qubit
|yi⟩ , |ri⟩ , |ci⟩ requires 2 CNOT and 3 Toffoli gates, except for the first addition where
only 1 Toffoli and 1 CNOT are required, as there is no carried-out value. The circuit is

13

Figure 3: ith iteration of one possible circuit to perform the addition |y⟩ |r⟩ → |y⟩ |r + y⟩

summarized in Fifure 3.

In general, at the end of the quantum addition, |c⟩ is still entangled with |y⟩ and
|y + r⟩. Therefore, |c⟩ can have a deleterious impact on any further usage of these states
(if |c⟩ is measured for example). Therefore, it is necessary to disentangle the carrier state
from the other states. To do so, one simply needs to apply the gates acting on |c⟩ in
the inverse order (assume A = BC hermitian, then A−1 = CB). This amounts to ∼ 3m
Toffoli gates.

Following the protocol that we described, a quantum addition between two states
with m qubits is therefore composed of:

• ∼ 3m qubits (|y⟩, |r⟩ and |c⟩)

• ∼ 2m CNOT gates

• ∼ 6m Toffoli gates

We note that if we invert the role of 0 and 1 in all controlled operations (called anti-
controled operations), meaning that we perform anti-controlled NOT gates and anti-
Toffoli, we obtain a quantum substractor instead of a quantum adder. We also note that
there are other protocols to perform addition, which will rebalance the requirements in
the number of gates between CNOT and Toffoli.

3.3.2 From exponentiation to multiplication

As described above, we look for an unitary U which performs the following:

U : |x⟩ |1⟩ → |x⟩ |ax [N]⟩ (28)

x can be rewritten into its binary basis as:

x =
n−1∑
k=0

xk2
k (29)

14

Figure 4: Adapted from [1]. High-level quantum circuit showing the global Hadamard
gate, and the decomposition of the modular exponentiation into consecutive modular
controled multiplications c−U

a2k

where n is the number of qubits in the control register. Following this, we can rewrite
ax [N] as:

ax = a
∑

k xk2
k

=
n−1∏
k=0

a2
kxk [N] =

n−1∏
k=0

(a2
k

[N])xk [N], (30)

where we used the fact that ab [N] = (a [N] b [N]) [N]. This means that in order to
implement ax [N] on the work register, one needs to multiply n times the value stored
in the work register by a2

k
[N], conditioned on the value of xk. Here, xk is the value of

the qubit in the control register at position k (either 0 or 1). We introduce the unitary
c-U

a2k
with 0 ≤ k < n, which performs the following:

• if xk = 0, no multiplication, applies identity to the work register,

• if xk = 1, multiply the work register by a2
k
[N]

This unitary c-U
a2k

is similar to a CNOT gate, but applies U
a2k

instead of an X gate.
We can express U as:

U =
n−1∏
k=0

c-U
a2k

with U
a2k

|y⟩ = |ya2k [N]⟩

Using these mathematic tricks, we are now in a situation where instead of having to
apply the modular exponentiation U , we need to apply a product of controlled modular
multiplications. The values a2

k
are computed classically before the execution of the

algorithm. Each c-U
a2k

is controlled by one qubit of the control register xk (hence the
name of this register!), and acts on the entire work register, as displayed in Figure 4.

15

3.3.3 From multiplication to addition

Since a and a2
k
are integers, U

a2k
could be directly computed using the addition described

above. However, this would be sub-optimal with respect to the technique described now.
We can decompose y (m qubits) into its binary basis:

y =
m−1∑
i=0

yi2
i → ya2

k

=
m−1∑
i=0

yi2
ia2

k

(31)

meaning that U
a2k

can be performed by applying a succession of controlled modular
additions conditioned on the value of yk, in the exact same fashion as previously. Since
the addition is controlled on |y⟩, we cannot directly perform the addition on the work
register |y⟩ itself. We therefore need an extra register |r⟩, called the accumulation
register, in which we store the addition. We are therefore performing the operation U+

where:

• if yk = 0, no addition, applies identity to the work register

• if yk = 1, add to the accumulator register a2
k
[N]

We detail how U
a2k

is implemented:

• The addition is performed by the adder protocol detailed above

• The controlled part is added by applying a control on yi for the first gate in the
adder protocol. If yi = 0, performing this effectively cancels any addition that
would occur to the accumulation register.

• The modulo N operation is applied after each addition, in order to prevent the
necessity to store a state which is much larger than N .

• After all additions have been performed, the state in the accumulator register is
|r⟩ = |ya2k⟩

• This state is then transferred into the work register using for example a SWAP
gate (see Lecture 1).

At the end of step k, the system is in the state |x⟩ |ax12+x24+x38+...+xk2
k⟩. We then re-

peat this protocol for 0 ≤ k < n, and eventually implement the modular exponentiation
U !

3.3.4 Applying the modulo N

There are various solutions for the moduloN operation, with different tradeoff in number
of operations or qubit numbers. In all solutions, the operation is performed in 3 parts:

1. Some ancillary qubits check whether the value in the accumulation register is larger
or lower than N (a sub-routine called quantum comparator)

16

2. This information is transferred to a flag qubit, which is in |0⟩ if r < N , and in
|1⟩ is r ≥ N (in some solutions, the flag qubit is the same at the ancillary qubit
described in the previous operation).

3. A quantum substraction (the ”anticontrolled” protocol than the one performed in
the quantum addition) of value N is applied, conditioned on the flag qubit.

These protocols work because they are performed at each addition, and therefore r <
2N .

3.3.5 Conclusion

We have here described the modular exponentiation function. We wrap-up the key
aspects:

• The modular exponentiation function can be converted into a product of modular
multiplications over the n bits that compose |x⟩, controlled by the value of xi

• The modular multiplications can be implemented via successive modular additions
controlled by the value of yi over the m bits that compose |y⟩. The result of the
addition is stored in an accumulation register |r⟩ of size m.

• The modular additions are composed of a quantum adder routine followed by a
verification protocol which substracts N to r if r > N .

We also wrap up the cost of the modular exponent function:

• The number of qubits is at least equal n+3m: n qubits in the control register, m
qubits in the work register, m qubits in the accumulation register, and m qubits
for the carry-over in the additions. Depending on the method for the quantum
comparator, an extra m qubits can be required.

• The number of Toffoli gates is at least equal to 26nm2. An addition as we did
it is 6m Toffoli. The quantum comparison is equivalent to performing two addi-
tions, and the conditioned subtraction converts the CNOT gates into Toffoli. The
modular addition is performed m times, and the multiplication n times.

• As previously discussed, in order for Shor to work, one needs n > 2 log2(N) and
m ≥ log2(N). This means that the total number of qubits is about 6 log2(N) (we
took the m extra qubits here), and the number of Toffoli gates for the modular
exponentiation function is 52 log2(N)3. Note that these requirements depend on
the protocol used for the addition and application of the modulo, but the scaling
with N remains the same.

4 The quantum Fourier transform

We describe the last part of Shor’s algorithm: the quantum Fourier transform. As
previously discussed, the quantum Fourier transform is an efficient quantum algorithm

17

for performing a Fourier transform of quantum mechanical amplitudes. It does not
speed up the classical task of computing Fourier transforms of classical data. But
one important task which it does enable is phase estimation, the approximation of the
eigenvalues of a unitary operator under certain circumstances. As reminder, assuming
a state |j⟩ composed of n qubits, we are looking for a unitary operation UQFT which
performs:

|j⟩ → 1√
2n

2n−1∑
k=0

e2iπjk/2
n |k⟩ (32)

This operation is equivalent to the classical discrete Fourier transform of an input signal
x0, ..., x2n−1 into values y1, ..., y2n defined as:

yk ≡
1√
2n

2n−1∑
j=0

xje
2iπjk/2n (33)

In order to implement such unitary, we rewrite the operation of the QFT on |j⟩, remem-
bering that the states can be represented by the qubit |x⟩ = |x2n ...x1⟩:

|j⟩ → 1√
2n

2n−1∑
k=0

e2iπjk/2
n |k⟩

=
1√
2n

1∑
k1=0

...
1∑

k2n=0

e2iπj(
∑n

l=1 kl2
−l) |k1..k2n⟩

=
1√
2n

1∑
k1=0

...
1∑

k2n=0

2n⊗
l=1

e2iπjkl2
−l |kl⟩

=
1√
2n

n⊗
l=1

1∑
kl=0

e2iπjkl2
−l

=
1√
2n

n⊗
l=1

(|0⟩+ e2iπj2
−l |1⟩)

=
(|0⟩+ e2iπ0.jn |1⟩)(|0⟩+ e2iπ0.jn−1jn |1⟩)...(|0⟩+ e2iπ0.j1j2...jn |1⟩)√

2n

where we introduced the notation for the binary fraction 0.jljl+1...jm = jl/2 + jl+1/4 +
...+ jm/2

m−l+1.

In order to understand how to implement such operation, let’s focus on one of the
output qubit |kl⟩. Before the unitary, this qubit is in state |jl⟩, and after, we get
|kl⟩ = |0⟩+ e2iπ0.jljl+1...jn |1⟩. We therefore need to have a unitary which applies a phase
gate Rk to the qubit, depending on the phase of the other qubits, with

Rk ≡
(
1 0

0 ei2π/2
k

)
The circuit that allows to perform the QFT is shown in Figure 5. To see that the
pictured circuit computes the quantum Fourier transform, consider what happens when

18

Figure 5: Adapted from [1]. Efficient circuit for the quantum Fourier transform. Not
shown are SWAP gates at the end of the circuit which reverse the order of the qubits,
or normalization factors of 1/

√
2 in the output

the state |j1...jn⟩ is input. Applying the Hadamard gate to the first bit produces the
state:

1√
2
(|0⟩+ e2iπ0.j1 |1⟩) |j2...jn⟩ (34)

since e2iπ0.j1 = −1 when j1 = 1, and is +1 otherwise. Applying the controlled-R2 gate
produces the state:

1√
2
(|0⟩+ e2iπ0.j1j2 |1⟩) |j2...jn⟩ (35)

We continue applying the controlled-R3, R4 through Rn gates, each of which adds an
extra bit to the phase of the co-efficient of the first |1⟩. At the end of this procedure we
have the state:

1√
2
(|0⟩+ e2iπ0.j1j2...jn |1⟩) |j2...jn⟩ (36)

Next, we perform a similar procedure on the second qubit. The Hadamard gate puts us
in the state

1

2
(|0⟩+ e2iπ0.j1j2...jn |1⟩)(|0⟩+ e2iπ0.j2 |1⟩) |j3...jn⟩ (37)

and the controlled-R2 through Rn−1 gates yield the state:

1

2
(|0⟩+ e2iπ0.j1j2...jn |1⟩)(|0⟩+ e2iπ0.j2...jn |1⟩) |j3...jn⟩ (38)

We continue in this fashion for each qubit, giving a final state:

1

2
(|0⟩+ e2iπ0.j1j2...jn |1⟩)(|0⟩+ e2iπ0.j2...jn |1⟩)...(|0⟩+ e2iπ0.jn |1⟩) (39)

SWAP operations, omitted from Figure 1 for clarity, are then used to reverse the order
of the qubits and obtain the post-QFT state.

Exercise 3. Perform the quantum fourier transform circuit for 3 qubits, and write the
corresponding matrix representing the QFT operation.

Having displayed the required circuit to perform a QFT, we can count the number
of operations that are required to implement the QFT. We start by doing a Hadamard
gate and n−1 conditional rotations on the first qubit – a total of ngates. This is followed

19

by a Hadamard gate and n− 2 conditional rotations on the second qubit, for a total of
n + (n − 1) gates. Continuing this way, we see that n + (n − 1) + ... + 1 = n(n + 1)/2
gates are required, plus the gates involved in the swaps. At most n/2 swaps are required.
Therefore, the QFT requires ∼ 3n + n2/2 ∼ O(n2) gates. Since for Shor to work we
need n > 2 log2(N), we obtain the the number of gates is ∼ 6 log2(N) + log2(N)2.

In contrast, the best classical algorithms for computing the discrete Fourier transform
on 2n elements are algorithms such as the Fast Fourier Transform (FFT), which compute
the discrete Fourier transform using O(n2n) gates. That is, it requires exponentially
more operations to compute the Fourier transform on a classical computer than it does
to implement the quantum Fourier transform on a quantum computer. The QFT is the
step that enables to get the exponential speedup with respect to classical computing.

5 Conclusion

In this lecture, we have seen how Shor algorithm work.

We first comment on the quantum ressources that are required to perform Shor. In
order to factorize a number N , one needs:

• We need ∼ 6 log2(N) qubits: 2 log2(N) in the control register, log2(N) in the
work register, 3 log2(N) quits to enable the quantum addition and the modulo N
operation (the number of qubits required for these operation can vary depending
on the exact protocol which is used)

• The number of gates is ∼ 52 log2(N)3 + log2(N)2 + 6 log2(N)2, largely dominated
by the cost ∼ 52 log2(N)3 of the modular exponentiation.

From these numbers, we could look at when factorizing using Shor enters into a regime
of practical quantum advantage. This will be discussed in Lecture 6.

Shor algorithm follows the structure:

• The computationally-simple part of the algorithm is performed on a classical com-
puter

• The NP-hard part of the algorithm is performed on a quantum computer

This structure is present in almost every type of quantum algorithm. The quantum com-
puter is used as a sub-routine of a larger algorithm, and we should not see the quantum
computer as a classical computer: the quantum computer is only here to ”compute”
where it excels, leaving any other tasks to the classical computer. That’s why quan-
tum computers will be placed into high-performance computing centers, integrated into
classical computers. This consideration pushed people to change the terminology from
quantum computer to quantum processing units (also known as QPU), similar to CPU
or GPU, as it is sought to be a sub-part of a classical computer.

20

Shor’s algorithm uses many techniques derived from number theory for the classical
part. This shows that in order to find new algorithms, researchers should be focused on
classical expertise, with an understanding about what quantum computers can do. At
the quantum level, the most important feature of the quantum computer that we have
discussed are (1) modular exponentiation using quantum addition, and (2) the Quantum
Fourier Transform. The quantum addition is relatively similar than classical addition,
with the difference that it can handle state superposition. On its own, it does not enable
to get speedups: it is the QFT that enables the exponential speedup, by creating the
required interferences that enable to obtain the result of Shor algorithm with a single
measurement.

References

[1] Nielsen and Chuang, Quantum computation and, Cambridge University Press
(2008).

21

