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Lecture 2: Atomic qubits
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| Trapping neutral atoms 7% Pasqal

~ 12000 trapped atoms




| Trapping neutral atoms
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Logical qubit storage
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| Trapping ions
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FIG. 1. An image of 98 atomic ions illuminated by resonant
laser light in the Helios 2D surface trap illustrated in Fig. 2.
The overlaid lines indicate different regions of the device with
the quincunx of ions showing the location of the ion trap

junction.
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| Atomic species choice 7% Pasqal

1 2
H He
3 4 5 6 7 8 9 10
Li |Be B|C|N|O | F |Ne
11 12 13 14 15 16 17 18
Na |Mg Al|Si| P | S |Cl|Ar

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

K |Ca[Sc|Ti|V |Cr|Mn|Fe|Co|[Ni|Cu|Zn|Ga|Ge|As|Se | Br|Kr

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

Rb Sr| Y | Zr [Nb|Mo|Tc|Ru|Rh|Pd|Ag | Cd|In |Sn|Sb|Te| I |Xe

56 57 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86

Cs|Ba|La|Hf|Ta| W |Re|Os| Ir | Pt|Au|Hg| Tl | Pb|Bi | Po| At|Rn

87 88 89 104 | 105 106 | 107 | 108 | 109

Fr |Ra|Ac|Rf |Db|Sg | Bh|Hs | Mt

58 59 60 61 62 63 64 65 66 67 68 69 70 71

90 91 92 93 94 95 96 97 98 99 100 | 101 102 | 103

Th|{Pa| U |[Np|Pu|Am|Cm|Bk | Cf|Es |Fm|Md|No | Lr
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| Atomic states and qubit encoding 7% Pasqal
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| Energy levels and qubit ## Pasagal

Rubidium
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| Motional dephasing

Ramsey experiment:
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| T, and T, times 7% Pasqal
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| Rabi oscillations

2 probability
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| Atomic states and qubit encoding 7% Pasqal

4 Long-lived ground states N Gnianglemen’r through Rydberg sta’res\

« Equivalent of the qubit used in
Rubidium to define the second
— very well known

« Strongly insensitive to
environment - long lifetime and
coherence time

« Rydberg atoms behave as a dipole:
strongly interacting
* Long lifetime (compared to interaction)
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| Two-qubit gate through Rydberg interactions i Pasqal

R Interaction Hamiltonian between two atoms:
> C6
\ . X
Energy ! / N\
A NSy =lr)y | These are the lasers This is the energy shift
—_ | which connect |1) to |r) due to Rydberg
1 | interactions

Qe —) 420nm + 1013nm lasers

—|1) == Only |1)is coupled to Rydberg states
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| Two-qubit gate through Rydberg interactions 7+ Pasqal

Single atom Two atoms in the Rydberg blockaded regime
| Energy ‘: " Energy }
| nSl/Z__ ) | i |W) = (|1r) + |r1))/V2 | Entangled state
0 : : V20
| | | ' We connect to the |W)
: —|1) : | —|11) : state with a strength
| : ' whichis V2 higher!
; —0) | —100) ;

______________________________________

We use this V2 increase to do a controlled-Z gate
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| Two-qubit gate through Rydberg interactions i Pasqal

/ Gate protocol: \ / We perform a Controlled-Z (CZ) gate: \
Laser power input | Laser pulses effect | output
|00) —»;Not connected to Rydberg ' > |00)
|01) -, Only a single atom goes in Rydberg '— |01)
M 2 |10) —; Only a single atom goes in Rydberg ' > [10)
> |11) - Both atoms go in Rydberg: blockaded ' - —|11)
Tlme \ ! 1 j
Laser phase
Is
:Time

- /




| Two-qubit gate through Rydberg interactions

o

Laser power

/ Gate protocol:

@
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Laser phase

¥ Pasqal

\lll) —,Both atoms go in Rydberg: blockaded

/ We perform a Controlled-Z (CZ) gate:
input | Laser pulses effect | output
|00) —»;Not connected to Rydberg ' > |00)
|01) —, Only a single atom goes in Rydberg ' > |01)
|10) —,Only a single atom goes in Rydberg ' — [10)

E—>—|11) /

Second pulse
brings back to |01)

Relevant levels: Dynamics:
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S /" Bloch sphere: very nice tool to represent

dynamics in guantum systems




| Two-qubit gate through Rydberg interactions

o

Laser power

/ Gate protocol:

@

@

~

Laser phase

%% Pasqal
/ We perform a Controlled-Z (CZ) gate: \
input | Laser pulses effect | output
|00) —»;Not connected to Rydberg ' > |00)
|01) -, Only a single atom goes in Rydberg '— 01)
|10) —,Only a single atom goes in Rydberg ' — [10)

\lll) — Both atoms go in Rydberg: blockaded i - —|11) /

Relevant levels: Dynamics:
co ‘. W)
: En?rgy |
: : A Each pulse ends up
| — W) | 8l(1) in |11) due to the
| | @ V2 increase
I |
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: | &
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S /" Bloch sphere: very nice tool to represent

dynamics in guantum systems



| Two-qubit gate through Rydberg interactions #¥ Pasqal

>O
Operate in the Rydberg blockaded regime (friggered by atom distance)
Rydberg excitation produces a Bell state: |W) = (|1r) + |r1))/\/§

( \

. Energy !

: Yy ) i 4 Engineer a controlled-Z gate )
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L ] \ Levine et al., PRL 123 (201 9u

Gate protocol called Levine-Pichler (LP) gate



| Two-qubit gate through Rydberg interactions
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| Motional states control 7t Pasqal

Sideband cooling:
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| Molmer-Sorensen gate f¥ Pasagal
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