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Master QLMN - Experimental quantum computing

Introduction and overview: qubits, gates, circuits and errors… ✅

Module 1: Hardware

→ Qubits based on atoms and ions. ✅

→ Qubits based on superconducting circuits. 🔄

→ Other qubits: photons, electron spins & NMR.

Module 2: Algorithms and their experimental implementations

→ Quantum algorithms 1: the modules (QFT, Phase estimation…)

→ Quantum algorithms 2: Grover, Shor and experimental demonstrations.

Module 3: Quantum error correction

→ Quantum error correction and description of codes

→ Construction of a fault-tolerant architecture.

Program
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Errata

Page 12, the number operator can then be mapped from  to
, which is represented as:
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1
2

( ).
−1 0
0 1

σ− = ( )

0 1
0 0

σ+

Master QLMN - Experimental quantum computing - Superconducting Circuits

4 / 27



Groups Working on Superconducting Circuits

Several major players and startups are actively advancing superconducting
qubit technology as of 2026:

Qubit
Technology

Groups / Institutes

JJ based
qubits

ETH Zurich, IBM, Google, Rigetti, MIT, University of Maryland, IQM Quantum
Computers, Fujitsu / RIKEN, Oxford Quantum Circuits

Transmons +
cat code

AWS

Cat code Alice&Bob, Yale, ENS Lyon / ENS Ulm

GKP code Nord Quantique, ENS Ulm, MIT

Dual-Rail /
Erasure Qubits

Quantum Circuits Inc, Yale
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Nobel Prize in Physics 2025

Figure 1: Nobel Prize in Physics 2025: Awarded to John Clarke, Michel H. Devoret, and John M. Martinis for
the discovery of macroscopic quantum mechanical tunnelling and energy quantisation in an electric circuit.

Nobel Prize 2025
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Quantum Harmonic Oscillator
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Experimental Setup1

Figure 2: Dilution Refrigerator: Operating at  mK to ensure .T ≤ 20 kBT ≪ ℏω0

1.  is taken from .Figure 2 Oxford instrument website
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The Transmon Qubit
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History of Superconducting Circuits
1985: Discovery of macroscopic quantum mechanical tunnelling and
energy quantisation in an electric circuit (

).

1985: Creation of the quantronics group at CEA Saclay.

1999: First coherent control of a macroscopic quantum two-state
system (Cooper Pair Box) ( ).

2007: Invention of the Transmon qubit ( ).

Martinis, Devoret, and Clarke
1985

Nakamura, Pashkin, and Tsai 1999

Koch et al. 2007
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LC Circuit & Potential1

Figure 3: a Circuit for a parallel LC-oscillator. b Quadratic energy potential. c Josephson qubit circuit. d
Cosine potential yielding anharmonicity.

1. Krantz et al. ( )2019
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Real Device

Figure 4: Multi-qubit transmon processor.
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Phase Space

Figure 5: Eigenenergies of the Transmon Hamiltonian in phase space (  vs ).Q Φ
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Superconducting Qubit Zoo

Figure 6: The landscape of superconducting qubits defined by , , and .EJ EC EL
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Coherence Times

Figure 7: Evolution of  and  times over two decades. See .T1 T2 Awesome Quantum Computing Experiments
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Bosonic Encoding
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Damped cavity

Figure 8: Evolution of a damped cavity with an initial coherent state.
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Cat Qubit
Bloch Sphere Basis States Coherent superposition

Figure 9: Bloch sphere representation of
the cat qubit.

Figure 10: |0⟩L = |α⟩

Figure 11: |1⟩L = | − α⟩

Figure 12:
|+⟩L ∝ |α⟩ + | − α⟩

Figure 13:
|−⟩L ∝ |α⟩ − | − α⟩
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Error Suppression1

Figure 14: Bit-flip time  increases exponentially
with cat size .

TX

|α|2
Figure 15: Phase-flip rate  increases linearly with
cat size .

ΓZ

|α|2

1. Lescanne et al. ( )2020
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Cat States for different 
Increasing  increases exponentially the bit-flip time (hills more separated) but
increases linearly the phase-flip rate (smaller fringes)

α
α
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Other Bosonic Codes1

Figure 16: Wigner functions of various bosonic codes: 4-cat, binomial, GKP, 2-cat.

1. Joshi, Noh, and Gao ( )2021
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Four-Component Cat Code1

Figure 17: Four-component cat code under photon loss. Every photon loss event  changes not only the
parity of the basis states, but also changes the phase relationship between them. The encoded state
cycles between the even logical and odd error parity subspaces, while also rotating about the Z-axis by

. The decoding sequence must take both these effects into account to correctly recover the logical
information.

â

π/2

1. Joshi, Noh, and Gao ( )2021
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State Preparation

Figure 18: Preparation of  from .|+⟩L |0⟩L
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Gates
Z Gate X Gate

Figure 19: Logical Z rotation. Figure 20: Logical X gate (rotation by ).π
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Thank you for your attention!
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