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Viaster QLMN - Experimental quantum computing

() Program

Introduction and overview: qubits, gates, circuits and errors...

Module 1: Hardware
Qubits based on atoms and ions.
Qubits based on superconducting circuits.

Other qubits: photons, electron spins & NMR.

Module 2: Algorithms and their experimental implementations
Quantum algorithms 1: the modules (QFT, Phase estimation...)

Quantum algorithms 2: Grover, Shor and experimental demonstrations.

Module 3: Quantum error correction
Quantum error correction and description of codes
Construction of a fault-tolerant architecture.
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Errata

» Page 12, the number operator can then be mapped fromn — %]AI to
—%Z which is represented as:

1 /-1 0
2\ 0 1/
0 1 | L
o Page 12 also, lused o_ = 0 0 but sometimes it is referred to as

O+
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Groups Working on Superconducting Circuits

Several major players and startups are actively advancing superconducting
qubit technology as of 2026:

Qubit
Technology

JJ based
qubits

Transmons +
cat code

Cat code
GKP code

Dual-Rail /
EFrasure Qubits

Groups / Institutes

ETH Zurich, IBM, Google, Rigetti, MIT, University of Maryland, IQM Quantum
Computers, Fujitsu / RIKEN, Oxford Quantum Circuits

AWS

Alice&Bob, Yale, ENS Lyon / ENS UIm
Nord Quantique, ENS UIm, MIT

Quantum Circuits Inc, Yale
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Nobel Prize in Physics 2025

John Clarke Michel H. Devoret

“for the discovery of macroscopic quantum “for the discovery of macroscopic quantum
mechanical tunnelling and energy quantisation in an mechanical tunnelling and energy quantisation in an
electric circuit” electric circuit”

111. Niklas Elmehed © Nobel Prize Outreach [11. Niklas Elmehed © Nobel Prize Outreach
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John M. Martinis

“for the discovery of macroscopic quantum
mechanical tunnelling and energy quantisation in an
electric circuit”

I11. Niklas Elmehed © Nobel Prize Outreach

Figurelll: Nobel Prize in Physics 2025: Awarded to John Clarke, Michel H. Devoret, and John M. Martinis for
the discovery of macroscopic quantum mechanical tunnelling and energy quantisation in an electric circuit.

Nobel Prize 2025
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https://www.nobelprize.org/all-nobel-prizes-2025/
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Quantum Harmonic Oscillator
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Experimental Setup'!

Figure 2: Dilution Refrigerator: Operating at 7' < 20 mK to ensure kgT' < hwy,.

1. Figure 2 is taken from Oxford instrument website.
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https://nanoscience.oxinst.com/products/proteoxmx
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The Transmon Qubit
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History of Superconducting Circuits

» 1985: Discovery of macroscopic quantum mechanical tunnelling and
energy quantisation in an electric circuit (Martinis, Devoret, and Clarke

1985).
1985: Creation of the quantronics group at CEA Saclay.

1999: First coherent control of a macroscopic quantum two-state
system (Cooper Pair Box) (Nakamura, Pashkin, and Tsai 1999).

» 2007: Invention of the Transmon qubit (Koch et al. 2007).
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| C Circuit & Potential
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Figure 3: a Circuit for a parallel LC-oscillator. b Quadratic energy potential. ¢ Josephson qubit circuit. d
Cosine potential yielding anharmonicity.

1. Krantz et al. (2019)
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Real Device

Figurel: Multi-qubit transmon processor.
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Phase Space

Figurelb: Eigenenergies of the Transmon Hamiltonian in phase space (Q vs ®).
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Superconducting Qubit Z00
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Figurelb: The landscape of superconducting qubits defined by Ej, E¢, and ET,.
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Coherence Times

Coherence Time (s)

Figurell/: Evolution of T and T3 times over two decades. See Awesome Quantum Computing Experiments.
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Bosonic Encoading
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Damped cavity
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FigurelB: Evolution of a damped cavity with an initial coherent state.
o
Master QLMN - Experimental quantum computing - Superconducting Circuits ‘?:\:3/ Pasqal



19/27

Cat Qubit

Bloch Sphere Basis States Coherent superposition
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Figure 9: Bloch sphere representation of
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Error Suppression’
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Figure 15: Phase-flip rate I' ; increases linearly with

Figure 14: Bit-flip time T'x increases exponentially
cat size |a|?.

with cat size |a/|%.

1. Lescanne et al. (2020)
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Cat States for different o

Increasing a increases exponentially the bit-flip time (hills more separated) but
increases linearly the phase-flip rate (smaller fringes)
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Other Bosonic Codes'
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Figure 16: Wigner functions of various bosonic codes: 4-cat, binomial, GKP, 2-cat.

1. Joshi, Noh, and Gao (2021)
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Four-Component Cat Code'

Figure 17: Four-component cat code under photon loss. Every photon loss event a changes not only the
parity of the basis states, but also changes the phase relationship between them. The encoded state
cycles between the even logical and odd error parity subspaces, while also rotating about the Z-axis by
7 /2. The decoding sequence must take both these effects into account to correctly recover the logical

information.

1. Joshi, Noh, and Gao (2021)
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State Preparation

Figurelll 8: Preparation of |4-), from [0) .
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Gates
/ Gate X Gate
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Figure 19: Logical Z rotation.
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Figure 20: Logical X gate (rotation by ).
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Thank you for your attention
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