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1 Objectives & Overview
These lecture notes provide an overview of superconducting circuits for quantum information processing,
ranging from fundamental principles to advanced bosonic encoding schemes. Our goal is to understand how
we can engineer artificial atoms using macroscopic electrical circuits. We will start by establishing a physical
intuition linking mechanical systems to electrical ones, then move to the non-linear elements that allow us to
define qubits in superconducting circuits, and finally explore how to protect quantum information using the
infinite Hilbert space of harmonic oscillators. Here are the key themes that we will cover in this lecture:

• Quantum Harmonic Oscillator (QHO):
– Establishing the correspondence between mechanical pendulums and LC circuits
– Lagrangian and Hamiltonian formulation of circuit dynamics
– Canonical quantization and phase space representations

• The Transmon Qubit:
– Introducing the Josephson1 Junction as a non-linear inductor to create anharmonicity.
– Deriving the Transmon Hamiltonian and the Duffing oscillator model.
– Control & Readout: Microwave drive, Rotating Wave Approximation (RWA), and dispersive

readout.
– Coupling: Capacitive coupling between qubits for 2-qubit gates.

• Bosonic Encoding & Error Correction:
– Utilizing the infinite Hilbert space of harmonic oscillators for redundant encoding.
– Open Quantum Systems: Modeling dissipation with the Lindblad master equation.
– Cat Codes: Stabilizing coherent states (|α⟩, | − α⟩) to suppress bit-flip noise.
– Bias-Preserving Gates: Implementing operations that respect the noise bias structure.
– GKP Codes: Translationally symmetric codes and symplectic geometry in phase space.

These notes were written for the Experimental Quantum Computing and Error Correction course of
M2 Master QLMN, see the course’s website for more information. They rely on the standard formalism of
superconducting circuits typically found in [1] and for bosonic codes in [2]. Also, a really nice description of
superconducting transmon qubits is accessible on the qiskit youtube channel, presented by Zlatko Minev.

Exercices for next week (2026-01-14)

3, 4, 5, 7, 9, 11, 13, 16, 17, 18

2 Quantum Harmonic Oscillator
2.1 Classical Harmonic Oscillator
To understand superconducting qubits, it is helpful to start with a system you already know well: the
mechanical harmonic oscillator. Recall from your earlier lectures that a simple pendulum or a mass on a
spring is the foundational model for quantization.

1Nobel prize in 1973 for his theoretical predictions of the properties of a supercurrent through a tunnel barrier

1

https://www.master-qlmn.universite-paris-saclay.fr/
https://atom-tweezers-io.org/teaching/
https://www.youtube.com/watch?v=eZJjQGu85Ps&list=PLOFEBzvs-VvrXTMy5Y2IqmSaUjfnhvBHR&index=17
https://www.zlatko-minev.com/


Recall: The Pendulum (1D Particle)

The Hamiltonian of a 1D particle is given by Ĥ = p̂2

2m + 1
2kx̂

2, where x̂ represents the position and p̂

the momentum. The potential energy can be expressed using the frequency ω =
√
k/m as 1

2mω
2x̂2.

In the quantum regime, we introduced Ladder Operators:
• Annihilation operator (â): â =

√
mω
2ℏ

(
x̂+ i

mω p̂
)
.

• Creation operator (â†): â† =
√

mω
2ℏ

(
x̂− i

mω p̂
)
.

• Position and Momentum relations: x̂ ∝ (â† + â) and p̂ ∝ (â† − â).
Action on Fock States |n⟩:

• â|n⟩ =
√
n|n− 1⟩.

• â†|n⟩ =
√
n+ 1|n+ 1⟩.

• Commutator: [â, â†] = 1.
These operators allow us to write the Hamiltonian in its quantized form, Ĥ = ℏω

(
n̂+ 1

2
)
, where the

number operator n̂ = â†â counts the number of excitations in the system.

Exercise 1: Hamiltonian in Ladder Operators

Substitute x̂ and p̂ with â and â† in the harmonic oscillator Hamiltonian to derive Ĥ = ℏω(n̂+ 1/2).

Exercise 2: Commutator of Ladder Operators

Show that [â, â†] = 1 using the definitions of â and â† and the canonical commutation relation
[x̂, p̂] = iℏ.

Now, let’s translate this mechanical intuition into electrical circuit variables. In an classical LC circuit, we
don’t have a mass or a spring, but we have charge and flux which behave as conjugate variables.

2.1.1 Electrical Variables and Physical Intuition

In electrical circuits, see fig. 1, the charge (Q) is defined as the integral of current over time, Q =
∫
i dt, and

moving charges correspond to current. For a capacitor, the relationship is given by Q = CV . Flux (Φ) is
defined as the integral of voltage over time, Φ =

∫
V dt, and the motion of charges generates a magnetic field

(B⃗) and associated flux. In the case of an inductor, the flux is Φ = Li. The total energy (E) in the circuit is
obtained by integrating the power, P (t) = V (t) · i(t), over time, giving E(t) =

∫
P (τ) dτ . Specifically, the

energy stored in the capacitor is Ecap = 1
2CΦ̇2, while the energy stored in the inductor is Eind = Φ2

2L .

Intuition: The LC Circuit as a Pendulum

We can map the LC circuit to a pendulum in two ways:
1. Charge as Position (The “Classical” View):

• Charge Q ↔ Position x
• Inductor L ↔ Mass m (Inertia against current change Q̈)
• Capacitor 1/C ↔ Spring constant k (Restoring force from accumulated charge)
• This is intuitive for classical circuits but problematic for quantum circuits with Josephson

Junctions.
2. Flux as Position (The “Quantum” View - Used Here):

• Flux Φ ↔ Position x
• Capacitor C ↔ Mass m (Kinetic energy term 1

2CΦ̇2 ∼ 1
2mv

2)
• Inductor 1/L ↔ Spring constant k (Potential energy term Φ2

2L ∼ 1
2kx

2)
Why do we use the second one? The Josephson Junction acts like a non-linear inductor. Its
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Figure 1: Schematic of a classical electric circuit model featuring two metal islands (grey) connected by an
inductive element (green) on a silicon substrate (light brown) (1) Dielectric substrate: silicon (2) Metal
pad (3) Inductor bridge: wire, Josephson Junction (4) +Q(t) Positive charge on the left island (5) -Q(t)
Negative charge on the right island (6) E⃗(r, t) Electric field vector between the pads (7) Voltage v(t) (8)
i(t) Current flowing through the bridge (9) B⃗(r, t) Magnetic field vector around the current (10) Flux Φ
Magnetic flux generated by the current

energy U(Φ) ∝ − cos(Φ) depends on flux. If we treat flux as “position,” this just becomes a non-linear
potential energy (like a non-linear spring), which is easy to handle in the Hamiltonian. If we treated
flux as “momentum,” we’d have a “cosine kinetic energy,” which is a mathematical nightmare!

2.1.2 Kirchhoff’s Network Laws

Using the nodes and loops of the circuit we can derive the equation of motion. Kirchhoff’s Current Law
(KCL) states that

∑
b∈node ±Q̇b(t) = 0 (conservation of charge). At a node n1 between the capacitor and

the inductor, this implies Q̇C + Q̇L = 0. Similarly, Faraday’s Law of Induction (or Kirchhoff’s Voltage
Law) requires

∑
b∈node ±Φ̇b(t) = 0. At node n1, this gives Φ̇C − Φ̇L = 0, implying ΦC = ΦL.

Given Q = CV =⇒ Q̇ = CV̇ = CΦ̈, and i = Φ/L, we obtain the second-order differential equation for
harmonic motion:

CΦ̈ + Φ
L

= 0

Exercise 3: LC Equation of Motion

Derive the equation of motion CΦ̈ + Φ/L = 0 starting from Kirchhoff’s laws applied to the LC circuit.

The solution describes a harmonic oscillation:

Φ̈ = −ω2
0Φ, where ω0 = 1√

LC
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Φ(t) = Φ0e
−iω0t

Note:

In this flux-based representation, it is the magnetic flux Φ that oscillates. Notice there is no explicit
Q in the final equation of motion, just as p doesn’t appear in the Newton’s law form mẍ+ kx = 0.

2.2 The Hamiltonian for the Harmonic Oscillator
Rather than deriving the system from the Lagrangian and performing a Legendre transformation, we can
obtain the Hamiltonian more directly by summing the energies stored in the elements of the circuit.

The Hamiltonian H for an LC circuit is defined in terms of the conjugate variables, with the flux Φ playing
the role of generalized position and the charge Q as generalized momentum. The total energy is given by the
sum of the electrostatic energy in the capacitor and the magnetic energy in the inductor:

H(Φ, Q) = Ekinetic + Epotential = Q2

2C + Φ2

2L

In this expression, the term Q2

2C represents the electrostatic energy, which acts as the analog of kinetic energy
p2/2m in mechanics. Meanwhile, Φ2

2L corresponds to the magnetic energy stored in the inductor, analogous to
the mechanical potential energy 1

2kx
2.

Intuition: Why Flux and Charge?

Why are flux (Φ) and charge (Q) conjugate variables like position and momentum?
In quantum mechanics, you cannot know position and momentum simultaneously with infinite precision.
Similarly, in a quantum circuit, you cannot know the exact number of Cooper pairs on the capacitor
island (Q) and the exact generalized flux (Φ, which is proportional to the superconducting phase ϕ)
at the same time. This uncertainty relation [Φ̂, Q̂] = iℏ is central to understanding why quantum
circuits behave differently from classical ones.

To verify that Φ and Q are indeed canonically conjugate variables, we turn to Hamilton’s equations of motion.
This approach allows us to recover the fundamental relations for voltage and current in the circuit. First,
consider the equation for velocity. The time evolution of the “position” coordinate, Φ, is given by Φ̇ = ∂H

∂Q .
Taking the derivative of the Hamiltonian with respect to Q, we find ∂H

∂Q = Q
C . Since Q = CV , where V is the

voltage across the capacitor, this gives Φ̇ = V . This equation matches the definition of magnetic flux, as
voltage is the time derivative of flux according to Faraday’s law. Next, consider the equation associated with
force. The time evolution of the “momentum” coordinate Q is given by Q̇ = − ∂H

∂Φ . When we differentiate the
Hamiltonian with respect to Φ, we get − ∂H

∂Φ = − Φ
L . Recall that the flux in an inductor is given by Φ = L · IL,

where IL is the current through the inductor, which leads to Q̇ = −IL. Because Q̇ represents the current
flowing into the capacitor (denoted IC), this equation can be rewritten as IC = −IL, or IC + IL = 0. This
result directly reflects Kirchhoff’s current law for a closed LC circuit.

Exercise 4: Equation of Motion

Combine the two results derived above (Φ̇ = Q/C and Q̇ = −Φ/L) to find a second-order differential
equation for Φ. Verify that this matches the standard harmonic oscillator equation Φ̈ + ω2

0Φ = 0,
where ω0 = 1/

√
LC.
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Exercise 5: Hamiltonian from Lagrangian

Starting from the Lagrangian L = Ekin − Epot = 1
2CΦ̇2 − Φ2

2L , calculate the conjugate momentum
Q = ∂L

∂Φ̇ and perform the Legendre transformation H = Φ̇Q − L to verify the expression for the
Hamiltonian given in the text.

Intuition

Another way to represent this is that the electric charges on the capacitor are flowing through the
inductor to the other plate and back and forth: ⊕Q =⇒ flux =⇒ ⊖Q (aka flip polarity of capacitor).

Using phase space representation, we can express the circular motion using C numbers:

α(t) =
√

1
2ℏZ (Φ(t) + iZQ(t))

α is the classical analog to the bosonic ladder operator. The Hamiltonian can be rewritten using α as:

H = Q2

2C + Φ2

2L = 1
2ℏω0(α∗α+ αα∗)

2.3 Canonical Quantization
Transitioning from classical to quantum mechanics involves promoting our variables to operators, a process
known as Dirac’s2 Canonical Quantization [3].

Full Canonical Quantization

Dirac’s Canonical Quantization also involves replacing the Poisson bracket with the commutator,
which we are not going to discuss in this lecture. For reference, here is the correspondence:

Classical (Poisson bracket) Quantum (commutator)

{x, p}P = 1 − i
ℏ [x̂, p̂] = 1̂

d
dt O = {O,H}P

d
dt Ô = − i

ℏ [Ô, Ĥ]

Where the Poisson bracket and commutator definitions are:
• Poisson Bracket: {A,B}P = ∂A

∂Φ
∂B
∂Q − ∂B

∂Φ
∂A
∂Q

• Commutator: [A,B] = AB −BA

Exercise 6: Flux-Charge Commutator

Using the canonical quantization rule [x̂, p̂] = iℏ, identify the correspondence x̂ → Φ̂ and p̂ → Q̂ to
show that [Φ̂, Q̂] = iℏ.

2.3.1 Classical & Quantum Oscillator Comparison

The following table provides a side-by-side comparison between the classical and quantum descriptions of the
harmonic oscillator, as applied to LC circuits. It highlights the correspondence between classical concepts (like
phase space and Poisson brackets) and their quantum analogs (such as ladder operators and commutators).

2Nobel prize in 1933 for the discovery of new productive forms of atomic theory
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Classical Quantum

HamiltonianH = Q2

2C + Φ2

2L = 1
2ℏω0(α∗α+ αα∗) Ĥ = Φ̂2

2L + Q̂2

2C = ℏω0(â†â+ ââ†)
Phase
Space

Points in phase space (Φ, Q) form circles;
can use a single complex number α ∈ C to
describe motion.

Quantum states live in Hilbert space; evolution
described by operators (â, â†)

Complex
Ampli-
tude (α)

α(t) =
√

1
2ℏZ (Φ(t) + iZQ(t))Time

evolution: α(t) = α(0)e−iω0t

N/A (see ladder operators)

Ladder
Opera-
tors

N/A Annihilation: â = 1√
2ℏZ

(Φ̂ + iZQ̂)Heisenberg

picture: â(t) = â(0)e−iω0t

Field Op-
erators

Φ(t) =
√

ℏZ
2 (α∗(t) + α(t))

Q(t) = i

√
ℏ

2Z (α∗(t) − α(t))

Φ̂ = ΦZP F (a† + a) Q = iQZP F (a† − a)

Impedance Z =
√
L/C is the characteristic impedance Z =

√
L/C

Relation {Φ, Q} = 1 (Poisson bracket) [Φ̂, Q̂] = iℏ1̂

For the quantum field operators, we used two constants ΦZP F and QZP F that we will define shortly when
discussing the eigenvectors of Ĥ.

For typical parameters (C = 10 pF, L = 100 pH), the resonance frequency is ω0/2π ≈ 5 GHz. To observe
quantum behavior, we must operate at temperatures where thermal energy is much smaller than the quanta
energy (kBT ≪ ℏω0), which requires dilution refrigerators operating at T ≤ 20 mK. In practice, they operate
at 15mK (−273.13◦C) using dilution refrigerator, see fig. 2 taken from Oxford instrument website.

Figure 2: Dilution refrigerator Golden chandeler.

2.3.2 Mechanical ↔ LC Oscillator Correspondence

Before we analyze the Hamiltonian and its eigenvalues, let’s pause to compare our quantized LC circuit with
the mechanical spring system introduced earlier in the lecture. Drawing on this analogy helps build intuition
for how the LC circuit oscillates.
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Quantity Mechanical (spring) Electrical (LC)
Coordinate Position x̂ Flux Φ
Conjugate Momentum p̂ Charge Q
Mass m Capacitance C
Restoring Force Spring constant k Inverse Inductance 1/L
Commutator [x̂, p̂] = iℏ [Φ̂, Q̂] = iℏ

2.4 Fock States of the Quantum Harmonic Oscillator (QHO)
Fock states are the energy eigenstates of the quantum harmonic oscillator (QHO) Hamiltonian and represent
distinct, quantized energy levels. The Hamiltonian can be written in terms of ladder operators as

Ĥ = ℏω0

2 (â†â+ ââ†) = · · · = ℏω0(â†â+ 1/2)

When this Hamiltonian acts on a Fock state |n⟩, the resulting energy eigenvalue En is given by

Ĥ|n⟩ = En|n⟩ = ℏω0(n+ 1/2)

Remember that n̂ = â†â denotes the number of excitations, and n can take integer values 0, 1, 2, . . . Even in
the absence of excitations (n = 0), the system possesses energy equal to 1/2ℏω0, known as the zero-point
energy. This relates to the two constants ΦZP F and QZP F introduced earlier via the statistical mean and
variances. Statistical Mean Values: Due to the symmetry of Fock states, both the mean flux (Φ) and the
mean charge (Q) vanish. For flux, the expectation value is

⟨Φ⟩n = ⟨n|ΦZP F (â+ â†)|n⟩ = 0

Similarly, for charge, we have

⟨Q⟩n = ⟨n| − iQZP F (â− â†)|n⟩ = 0

Variance and Zero Point Fluctuations (ZPF): Although the mean values are zero, the fluctuations,
measured by the variance, are nonzero and increase with the excitation number n. For example, the variance
of flux is given by

Var(Φ̂) = ⟨Φ̂2⟩ − ⟨Φ̂⟩2 = · · · = (2n+ 1)Φ2
ZP F

In the ground state (n = 0), the root mean square (RMS) fluctuation, also called the zero point fluctuation,
is defined as

σΦ(|0⟩) = ΦZP F

Exercise 7: Zero-Point Fluctuations

Derive the expression ΦZP F =
√

ℏZ
2 starting from Φ̂ = ΦZP F (â† + â) and the variance of the ground

state.

We have seen that the system’s total energy is divided between the inductive and capacitive forms. The
inductive energy is given by

Eind(Φ) = Φ2

2L
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The capacitive energy is

Ecap = Q2

2C

The variance ⟨Φ2⟩ physically represents the extent, or spread, of the wavefunction within the potential well
defined by the inductive energy.

As we’ve discussed, Fock states provide a quantized description of energy in the oscillator, with their
wavefunctions displaying characteristic spreads in flux and charge due to zero-point fluctuations. However, to
visualize and compare how these quantum states occupy phase space relative to their classical analogs, it
is helpful to introduce alternate representations. Particularly, we’ll use quasi-probability distributions like
the Husimi Q-function. In the following section, we will explore how both classical and quantum states are
represented in phase space and better understand the transition from deterministic orbits to the inherently
probabilistic nature of quantum mechanics.

2.5 Phase Space Representations: Classical vs. Quantum
In classical mechanics, the state of an oscillator with fixed energy traces a precise elliptical trajectory in
the (Φ, Q) phase space. In quantum mechanics, the Heisenberg3 uncertainty principle prohibits the
simultaneous precise definition of Φ and Q. As a result, a quantum state is described not as a point but as a
“cloud” of probability.

The Husimi Q-function provides a valuable mathematical tool for visualizing this quasi-probability distribution.
It is defined by the expression

Q(α) = 1
π

⟨α|ρ|α⟩

and represents the expectation value of the density matrix projected onto a coherent state |α⟩. For the
ground state |0⟩, the Q-function appears as a Gaussian-shaped blob centered at the origin. Fock states |n⟩
are represented by rings of finite width. In these symmetric states, the quasi-probability density averages to
zero at the center. Unlike classical rings, which are depicted as sharp lines, quantum rings exhibit a finite
width determined by the Zero Point Fluctuations (QZP F and ΦZP F ).

3 The Transmon Qubit
We begin this section by recalling some important dates of this field of research that started more than 40
years ago. Indeed, the demonstration of the quantized energy levels of a Josephson junction was first achieved
in 1985 [4] by John Martinis, Michel Devoret, and John Clarke4. That same year marked the creation of
the quantronics group at CEA Saclay by Michel Devoret, Daniel Esteve, and Cristian Urbina. Significant
progress continued with the development of the Cooper5 Pair Box in 1999 [5]. This evolution ultimately led
to the invention of the Transmon qubit in 2007 [6].

3.1 Why We Need Nonlinearity
A simple LC oscillator is not a qubit, a two-level system. Its energy levels En = ℏω0(n+1/2) are equidistant.
If we try to drive a transition from |0⟩ to |1⟩ with a microwave pulse at frequency ω0, we will inadvertently
drive transitions to |2⟩, |3⟩, and so on. We cannot isolate a two-level subspace.

3Nobel prize in 1932 for the creation of quantum mechanics
4Clarke, Devoret and Martinis obtained Nobel prize in 2025 for experiments demonstrating macroscopic quantum mechanical

tunnelling and energy quantisation in an electric circuit
5Nobel prize in 1972 for his jointly developed theory of superconductivity, usually called the BCS-theory
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Figure 3: A device consisting of four transmon qubits, four quantum buses, and four readout resonators
fabricated by IBM and published in npj Quantum Information in January 2017.

Intuition: The Ladder Problem

Imagine a ladder where every rung is spaced exactly 1 meter apart (harmonic oscillator). To climb it,
you use a robot with fixed arms that can only reach exactly 1 meter.
If the robot tries to climb to the first rung, it succeeds perfectly. But because the next rung is also
exactly 1 meter away, the robot will keep climbing to the second, third, or fourth rung when you only
wanted it to stay on the first one.
To make a qubit, we need to “distort” the ladder. If we make the first rung 1 meter high, but the
second rung only 0.9 meters away from the first, the robot can reach the first rung but will fail to reach
the second. This unique spacing (anharmonicity) allows us to isolate just the bottom two levels (|0⟩
and |1⟩) and ignore the rest. The Josephson Junction is the component that provides this distortion.

To fix this, we need a non-linear circuit element that makes the energy spacing unequal (anharmonic). This
element is the Josephson Junction, see fig. 4 extracted from [1].

3.2 Josephson Tunnel Junction
The Josephson Junction (JJ) acts as a non-linear inductor, see fig. 5. The energy stored in the junction is
given by EJ (ϕj) = EJ

(
1 − cos

(
ϕj

Φ0

))
, where Φ0 = ℏ/2e is the reduced magnetic flux quantum (approximately

10−15 Webers) and ϕj is the phase across the junction. By Taylor expanding the cosine term, we can separate
the energy into linear and non-linear components:

EJ(Φj) = E lin
JJ (Φj) + ENL

JJ (Φj)

EJ(Φj) ≈ EJ

2

(
Φj

ϕ0

)2

︸ ︷︷ ︸
Linear Inductor

− EJ

4!

(
Φj

ϕ0

)4

︸ ︷︷ ︸
Non-Linearity

+O
(
Φ6

j

)
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Figure 4: a Circuit for a parallel LC-oscillator quantum harmonic oscillator, with inductance L in parallel
with capacitance, C. The superconducting phase on the island is denoted ϕ, referencing ground as zero. b
Energy potential for the QHO, here energy levels are equidistantly spaced ℏωr apart. c Josephson qubit
circuit, where the nonlinear inductance LJ , represented with the Josephson-subcircuit in the dashed orange
box, is shunted by a capacitance, Cs. d The Josephson inductance reshapes the quadratic energy potential,
dashed red, into sinusoidal, solid blue, which yields non-equidistant energy levels. This allows us to isolate
the two lowest energy levels, forming a computational subspace with an energy separation ℏω01, which is
different than ℏω12.

Figure 5: Schematic cross-section of a Josephson tunnel junction. Dielectric substrate (light brown):
A base layer of Sapphire. Metal (grey): Aluminum electrodes forming the superconducting base and top layers.
Insulator (green): A tunnel barrier made of Aluminum Oxide (AlOx) sandwiched between the aluminum
layers.
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Exercise 8: Taylor Expansion of Cosine

Expand cos(x) to 4th order and identify the linear and non-linear terms in the Josephson energy.

ϕ0 = ℏ/2e = 3.3 × 10−16Wb (Weber, unit of magnetic flux) is the magnetic flux quantum with ℏ for the
quantum of action, the quantization of energy and the electromagnetic charge of a single electron. The 2
is because we talk about superconductivity so we are interested in pairs of electrons. The linear term
corresponds to a standard inductor, while the non-linear term provides the crucial anharmonicity necessary
for qubit operation, to isolate the |0⟩ ↔ |1⟩ transition.

3.3 Transmon Hamiltonian
A transmon consists of a Josephson Junction in parallel with a large shunting capacitor C, see fig. 4. The large
capacitance reduces sensitivity to charge noise, making the qubit stable. The full Hamiltonian is composed of
two terms: the junction energy that we just saw (EJ (Φ) = −EJ cos(Φ/ϕ0), where EJ = ϕ2

0
LJ

) and a capacitive
energy, the same as for the QHO (Ecap(Φ̇) = 1

2CΦ̇2). The potential energy thus follows a cosine curve. For
small oscillations near the bottom of the well, it behaves like a harmonic oscillator with energy E(2)

J = ϕ2

2LJ
.

Intuition: The Heavy Shunting Capacitor

The key innovation of the Transmon is the large capacitor in parallel. In our mechanical analogy, this
is like making the mass of the pendulum very heavy.
Why do this? A heavy mass is hard to disturb. In the quantum world, this makes the qubit much less
sensitive to “charge noise”, aka random fluctuations in the electric environment. This stability comes
at a cost: the anharmonicity (the difference between energy levels) gets smaller, but it’s a worthy
trade-off for a qubit that lives much longer (T1 and T2).

Let’s get a semi-classical intuition from the Phase Space Picture. We can describe the system using the
Hamiltonian H with conjugate variables Φ (flux) and Q (charge).

H(ϕ,Q) = Q2

2C − EJ cos
(

Φ
ϕ0

)
For a standard harmonic oscillator, the energy levels would be:

E = ℏωr(n+ 1/2) = Q2

2C + ϕ2

2LJ

In phase space (Q vs Φ), the trajectories of a harmonic oscillator form an ellipse. However, the cosine term
in the Transmon Hamiltonian deforms these trajectories as the energy increases, leading to anharmonicity
(uneven spacing between energy levels), see fig. 6.

3.4 Quantum Treatment of the Transmon
Having established the semiclassical and circuit-level understanding of the transmon, we now move to its full
quantum description. This section will show how to quantize the transmon Hamiltonian, treat the effects of
its nonlinearity, and reveal how the anharmonicity arises, at the origin of the qubit behavior. We start from
the Taylor-expanded Hamiltonian:

H ≃ Q2

2C + ϕ2

2LJ
− EJ

4!

(
Φ
ϕ0

)4
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Figure 6: Contour plot of eigenenergies of the phase space (Q vs Φ) of the transmon Hamiltonian.

that we rewrite using the creation and annihilation operators Φ = ΦZP F (a+ a†):

H = ℏω0a
†a− EJϕ

4
ZP F

4! (a+ a†)4

with ϕZP F = ΦZP F /ϕ0.

Expanding the (a+ a†)4 term and applying the Rotating Wave Approximation to drop fast-oscillating
terms (those that do not conserve particle number, e.g., a4, (a†)4, a2, (a†)2) we can write the Hamiltonian in
the form:

Ĥ = Ĥstationary +Hr(t)

Intuition: Rotating Wave Approximation (RWA)

Imagine pushing a child on a swing. You naturally push at the moment the swing is moving away
from you. This effectively adds energy.
Now imagine you are jittering your hands back and forth really fast while pushing, adding some kind
of vibration or shaking. These fast jitters don’t really move the swing; they average out to zero over
the course of a full swing. The RWA is the mathematical way of saying “ignore the fast jitters that
don’t match the swing’s natural frequency.” We keep only the terms that effectively transfer energy.

By expanding the terms, we find that (a+a†)4 includes terms ∝ a2, a†a, (a†)2 and ∝ a4, a†a3, (a†)2a2, (a†)3a, (a†)4.
Terms oscillating at 4ω0, 2ω0, etc., are dropped. We keep only the “stationary” terms and get:

H ≃ ℏω0a
†a− EJ

4! · ϕ4
ZP F · (12a†a+ 6a†2

a2)

Exercise 9: Transmon RWA

Expand (a+ a†)4 and order the terms by their oscillation frequencies.

After grouping terms and accounting for the commutator [a, a†] = 1, we arrive at the standard transmon
Hamiltonian:

12



H ≃ ℏ(ω0 − ∆q)a†a− ℏα
2 a†2

a2

where:

• ℏ∆q = ℏα is the Renormalization factor of the linear frequency due to Zero Point Fluctuations (ZPF).
This is essentially a Lamb6 shift due to ZPF.

• ℏα is the anharmonicity (also called Kerr nonlinearity), where ℏα = 1
2EJϕ

4
ZP F (zero point fluctuation

of the reduced magnetic flux).

We write the hamiltonian in its final form, called a Duffing Oscillator, using the number operator n̂ = a†a:

HRW A = ℏωqn̂︸ ︷︷ ︸
linear

− ℏα
2 n̂(n̂− 1)︸ ︷︷ ︸
non-linear

Exercise 10: Duffing Oscillator

Rearrange the expanded Hamiltonian to the form ℏωqn̂− ℏα
2 n̂(n̂− 1).

Where ωq = ω0 − ∆q (the “dressed” frequency of the qubit). The energy levels in the system exhibit
characteristic transitions. The transition between the first excited state and the ground state is given by
E1 − E0 = ℏωq. The next transition, from the second excited state to the first, is E2 − E1 = ℏ(ωq − α).
Typical parameter values for these transitions are ωq ∼ 5 GHz for the qubit frequency and α ∼ 0.3 GHz for
the anharmonicity, such that the ratio α/ωq is approximately 1/10. To first order perturbation theory, only
the energy changes, not the wavefunctions (eigenvectors):

• E
(1)
n = ⟨n(0)|HNL|n(0)⟩

• |n(1)⟩ =
∑

k ̸=n
⟨k(0)|HNL|n(0)⟩

E
(0)
n −E

(0)
k

|k(0)⟩ = 0 since ⟨i|n̂|j⟩ = δi,j

Let’s take a numerical example:

Typical Transmon Numerical Parameters

For a standard transmon qubit setup, the following parameter values are used:

Parameter Symbol Typical Value / Formula
Inductance LJ 14 nH
Capacitance CJ 65 fF
Bare Frequency ω0 =

√
1/LC 5.3 GHz

Josephson Energy EJ = ϕ2
0/LJ 12 GHz

Charging Energy Ec = e2

2C 0.3 GHz
Impedance Z =

√
L/C ≈ 450 Ω

Anharmonicity α 0.3 GHz
Qubit Frequency ωq ≈ 5 GHz

Exercise 11: Anharmonicity

Calculate the anharmonicity α for a transmon with EJ = 12 GHz and EC = 0.3 GHz.

6Nobel prize in 1955 for his discoveries concerning the fine structure of the hydrogen spectrum
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For the zero-point fluctuations, the ratio QZP F /2e ≈ 1.0 which indicates that approximately one Cooper
pair is oscillating in the system, which is in stark contrast to the 1012 electrons typically involved in motion
within classical circuits. For the flux quantum, we have ΦZP F /ϕ0 ≈ 0.5. When the system is in the |1⟩ state,
it involves about two Cooper pairs, which underscores the necessity for cryogenic cooling to maintain proper
operation.

Finally, in order to treat the system as a qubit, we restrict the Hilbert space and the operators to the subspace
consisting of {|0⟩, |1⟩}. The number operator can then be mapped from n̂− 1

2 Î to − 1
2 Ẑ, which is represented

as

1
2

(
−1 0
0 1

)
.

Similarly, the lowering operator â is mapped to σ̂ = 1
2 (X − iY ), which takes the form

(
0 1
0 0

)
.

Exercise 12: Pauli Matrix Mapping

Verify that the matrix representations of n̂ and â in the {|0⟩, |1⟩} subspace correspond to the Pauli
matrices as described.

We briefly mention that an entire zoo of superconducting qubits exist, depending on the ratio between the
physical parameters, see fig. 7 taken from [7]. We can cite the Cooper pair box, flux qubit, phase qubit,
quantronium, transmon, fluxonium, and hybrid qubit.

3.5 Qubit Control
We end this section by discussing three operations on the isolated transmon qubit: control via 1Q gates,
measurement and 2Q gates. In order to control the qubit, it is coupled to an input/output microwave drive
line, typically a coaxial cable, using a capacitor that enables charge-to-charge coupling. The drive Hamiltonian
takes the form Hdrive = −i 1

2Ω(t)(a† − a), which can be rewritten as 1
2Ω(t)Y for the transmon qubit. The

drive signal itself is expressed as Ω(t) = Ω0 · sin(ωdt+ ϕd), where Ω0 represents the amplitude of the drive
and ϕd the phase of the drive. We say that the charge is coupled since we have Q̂ = −iQZP F (a† − a), then
the drive Hamiltonian can be interpreted as the drive amplitude multiplied by the number of charge quanta,
Hdrive = ampl. drive × Q̂ quanta.

Exercise 13: Drive Hamiltonian

Show that Hdrive ∝ Q̂ leads to σy control in the qubit subspace.

The drive signal and the qubit state can be expressed in the rotating frame to understand gate operations.
By writing sin(ωdt + ϕd) = i

2
(
e−i(ωdt+ϕd) − e+i(ωdt+ϕd)) and a(t) = a0e

−iωqt, in the initial drive formula
Hdrive = −i 1

2Ω(t)(a†(t) − a(t)), we can apply the Rotating Wave Approximation (RWA) to the drive
(σ− → σ−e

−iωdt), and obtain the Hamiltonian in the rotating frame:

HR = ℏ
2 ∆ · Z + ℏ

2 Ω
(
e−iϕdσ− + eiϕdσ+

)
.
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Figure 7: A Superconducting qubits consist of simple circuits that can be described as the parallel combination
of a Josephson tunnel element (cross) with inductance LJ , a capacitance C, and an inductance L. The flux ϕ
threads the loop formed by both inductances. B Their quantum energy levels can be sharp and long-lived
if the circuit is sufficiently decoupled from its environment. The shape of the potential seen by the flux
ϕ and the resulting level structure can be varied by changing the values of the electrical elements. This
example shows the fluxonium parameters, with an imposed external flux of 1

4 flux quantum. Only two of
three corrugations are shown fully. C A Mendeleev-like but continuous ‘table’ of artificial atom types: Cooper
pair box, flux qubit, phase qubit, quantronium, transmon, fluxonium, and hybrid qubit. The horizontal
and vertical coordinates correspond to fabrication parameters that determine the inverse of the number of
corrugations in the potential and the number of levels per well, respectively.
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Exercise 14: Rotating Frame Transformation

Apply the unitary U(t) = eiωdtσz/2 to the drive Hamiltonian and derive the time-independent form
under RWA.

In this interaction picture, the Hamiltonian reduces into two pieces: a first piece that depends on the detuning
and sets the amplitude of the rotation at ∆ = ωd − ω0 and another term with (σ−, σ+) and depends on
the phase of the drive (to choose rotation around the X or Y axis). This Hamiltonian allows for general
rotations on the qubit by changing ∆ and Ω, enabling gates like X,Y, Z,H, S, T . An example is Rabi7
Oscillations: a constant drive amplitude Ω for a specific time results in a population transfer between |0⟩ and
|1⟩.

Having only perfect control through coupling would be ideal. However, control, noise, and dissipation
are intrinsically linked. According to the Fluctuation-Dissipation Theorem, coupling to intrinsic I/O
(input/output) channels leads to specific relaxation and decoherence times: T1 the energy relaxation time
(|1⟩ → |0⟩) and T2, the coherence time (phase information loss).

We saw progress in T1 times nonetheless: while in the late 90s we had T1 ∼ 1 ns, experiments made
improvements of roughly 5 orders of magnitude over 20 years, see fig. 8 from [8].

3.6 Qubit Measurement Strategies
To measure the qubit, we could couple directly to an I/O transmission line. This approach has the advantage
of a simple setup. However, it suffers from the “Purcell” effect (spontaneous emission), which limits T1 and
T2 because the qubit is too strongly coupled (“open”) to its environment. Instead, the qubit is coupled to
a detuned microwave cavity (resonator) which is then coupled to the I/O line. In the dispersive regime
(where the qubit and resonator are detuned), the interaction Hamiltonian is:

Heff
cav = ℏ (ωc − χσz) a†a

This means the resonator’s frequency shifts by ±χ depending on whether the qubit is in |0⟩ or |1⟩. By
measuring the reflection of a probe signal off the resonator, we can infer the qubit state without destroying it.

Intuition: The Refractive Index Analogy

How do we measure the qubit without touching it? Imagine the qubit is a piece of glass inside the
cavity. When the qubit is in state |0⟩, the glass has one refractive index. When it’s in state |1⟩, the
index changes slightly.
This change shifts the resonant frequency of the cavity. By sending a tone into the cavity and seeing
if it reflects or transmits, we can determine the “color” (frequency) of the cavity and thus deduce the
state of the qubit. This is “dispersive” because it relies on the dispersion (frequency shift) rather than
absorption of energy.

Exercise 15: Dispersive Shift

Using second-order perturbation theory on the Jaynes-Cummings Hamiltonian, derive the dispersive
shift χ = g2/∆.

This Quantum Non-Demolition (QND) setup inhibits spontaneous emission. The measurement mech-
anism relies on the fact that the reflection of the I/O line at the resonator depends on the qubit’s state.
Oscillators are used for both readout and facilitating 2-qubit (2Q) gates.

7Nobel prize in 1944 for his resonance method for recording the magnetic properties of atomic nuclei
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Figure 8: Physical qubit bitflip and coherence times. Evolution of reported T1 in solid lines and T2 in
dashed lines, times across different platforms. An exponential fit showing the characteristic doubling time in
years is included. For superconducting circuit, the T1 ×2 every 0.99y, and for T2 every 1.94y.
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3.7 Two Coupled Transmon Qubits
We saw how to perform single qubit gates on the transmon and how to measure its state. The last piece is
how to generate entanglement between tramson qubits. When two transmons (or a transmon and a resonator)
are coupled via a capacitor, the system is described by individual Hamiltonians:

• Qubit 1: H1 = Q2
1

2Ca
− Ea cos

(
ϕ1
Φ0

)
• Qubit 2: H2 = Q2

2
2Cb

− Eb cos
(

ϕ2
Φ0

)
The total Hamiltonian can be separated into linear and non-linear parts (Hfull = Hlin +HNL): The linear
part corresponds to the Hamiltonian of the two QHO which is Hlin = ℏωaa

†a+ ℏωbb
†b. The non-Linear Part

is Derived from the Taylor expansion of the cosine potential for both transmons:

EJ(ϕ) = −EJ cos
(

Φ
ϕ0

)
≃ EJ

2!

(
Φ
ϕ0

)2
− EJ

4!

(
Φ
ϕ0

)4
+ O(Φ6)

HNL = −Ea

4!

(
Φ1

ϕ0

)4
− Eb

4!

(
Φ2

ϕ0

)4

Because they are coupled, the physical fluxes ϕ1, ϕ2 are functions of the normal mode operators a and b: ϕ1 =
f(ϕa, ϕb) and ϕ2 = g(ϕa, ϕb). In their quantized form, we look for fluxes as: ϕ1 = ϕZP F

1a (a† +a)+ϕZP F
1b (b† +b).

Notice that we could apply this method in the case of readout, where one system is the cavity (resonator)
and the other is the qubit. We have the following linear terms:

Hlin = ℏωca
†
cac︸ ︷︷ ︸

cavity

+ ℏωqa
†
qaq︸ ︷︷ ︸

qubit

.

The non-linear coupling is expressed as:

HNL = −Ea

4!
(
ϕZP F

1a (a† + a) + ϕZP F
1b (b† + b)

)4

From which we derive the standard dispersive regime interaction Hamiltonian. One crucial limitation is that
this approach is inherently limited to nearest-neighbor coupling. Indeed, the two qubits must be connected
via a physical electrical circuit, a capacitor in our example. This implies that multiple SWAP gates are
necessary, which will limit the length of quantum computation possible before decoherence.

4 Bosonic Encoding
4.1 Bosonic Modes and Open Systems
4.1.1 Why Bosonic Modes?

After discussing how a two-level transmon can be encoded in a QHO, we revisit the QHO and its “ladder” of
energy states. Previously, we chose to encode our two-level system using the lowest two energy levels, which
necessitated introducing anharmonicity so that these states could be manipulated independently without
inadvertently affecting higher levels. However, encoding information in a QHO is not limited to just its
ground and first excited states. Instead, any two specific states among the infinite set of resonator states can
be selected, including states constructed as clever superpositions. We denote these specially chosen states
as |0L⟩ and |1L⟩, using the subscript L to indicate their role as logical qubit states within the QHO. For
instance, we could have chosen specific Fock state combination like |0⟩L = 1√

2 (|0⟩ + |4⟩) and |1⟩L = |2⟩, this is
the Kitten code, more on this code below. This approach to encoding information in QHO or bosonic modes
is known as a bosonic code. Bosonic modes provide several significant advantages. First, they offer hardware
efficiency because information can be encoded in high-dimensional Hilbert spaces. Second, high-Q resonators
serving as bosonic modes can exhibit much longer coherence times than traditional qubits, resulting in longer
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lifetimes for the encoded information. Third, established techniques for microwave state manipulation enable
robust control of these bosonic modes. Finally, the errors encountered in such systems are typically simpler,
with photon loss being the predominant type of error.

Moving from the ideal QHO to open systems requires us to account for environmental interactions such as
photon loss and dephasing. Our first step is to write down the equation of motion that describes these open
systems, introduce an nice visualization tool, and examine different examples of QHO behavior.

4.1.2 The Lindblad Master Equation

First, to describe the evolution of a state in a QHO, the “simple” Schrödinger8 equation is not enough. We
have to include environmental interactions. The evolution of the density matrix ρ is described by the more
complicated equation, the master equation:

ρ̇ = −i[H, ρ] +
∑

k

DLk
ρ.

Where the Lindbladian dissipator is given by DLρ = LρL† − 1
2 {L†L, ρ}, which governs the non-unitary

evolution induced by dissipation. Here, the curly brackets {·, ·} denote the anticommutator, defined for
operators A and B as {A,B} = AB +BA. In this context, H still represents the system Hamiltonian. The
new operators Lk correspond to the dissipation, or jump, operators that capture the effects of the environment
on the system.

Exercise 16: Lindblad Equation

Verify that the Lindblad equation preserves the trace of the density matrix (Tr(ρ̇) = 0).

4.1.3 Coherent States

Before introducing the visualizing tool for quantum states of a QHO in phase space, it is essential to introduce
the class of coherent states, which are the “most classical” states of the quantum harmonic oscillator. A
coherent state |α⟩ is defined as the eigenstate of the annihilation operator â:

â|α⟩ = α|α⟩

where α is a complex number.

Mathematically, in the Fock state basis, a coherent state is expressed as a superposition of number states
weighted by Poissonian amplitudes:

|α⟩ = e−|α|2/2
∞∑

n=0

αn

√
n!

|n⟩

The probability to find n photons in a coherent state follows a Poisson distribution, given by P (n) = |⟨n|α⟩|2 =
e−|α|2 |α|2n

n! .

Exercise 17: Coherent State Poissonian

Show that the probability distribution P (n) = |⟨n|α⟩|2 for a coherent state is Poissonian with mean
n̄ = |α|2.

Physically, a coherent state can be created by displacing the vacuum state |0⟩ in phase space. The displacement
operator is defined as:

8Nobel prize in 1933 for the discovery of new productive forms of atomic theory
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D(α) = eαâ†−α∗â

Thus, |α⟩ = D(α)|0⟩.

Intuition: Coherent States

A coherent state |α⟩ is the quantum state that most closely resembles a classical oscillating field.
Imagine a pendulum swinging with a large amplitude. In the quantum world, the trajectory of the
“tip” of the pendulum isn’t a point in phase space, but a small fuzzy ball of uncertainty (the zero-point
fluctuation).
In a coherent state, this fuzzy ball swings back and forth without spreading out or changing shape. It
stays “coherent.” The distance from the center tells you the number of photons (energy), while the
angle tells you the phase of the oscillation.

Exercise 18: Displaced Vacuum is a Coherent State

Prove that applying the displacement operator D(α) to the vacuum state |0⟩ yields the coherent state
|α⟩ defined as the eigenstate of the annihilation operator: a|α⟩ = α|α⟩.
Hints:

• Consider the Baker-Campbell-Hausdorff (BCH) formula for operator exponentials.
• Write |α⟩ = D(α)|0⟩ and act with a on this state.
• Show explicitly that aD(α)|0⟩ = αD(α)|0⟩.

One idea that will become crucial in the next section is to focus on the parity of such states. Understanding
the parity of coherent states gives us physical intuition for phase space representations like the Wigner
function. The parity operator is defined as Π̂ = (−1)n̂. The average parity of a quantum state is the difference
between the probability of having an even number of photons and an odd number of photons:

⟨Π⟩ = P (even) − P (odd) =
∞∑

n=0
(−1)nP (n)

For the vacuum state |0⟩ (which is a coherent state with α = 0), the distribution is P (0) = 1 and all other
P (n) = 0, so the parity is exactly +1. But what is the parity of a coherent state far from the vacuum state?
For a coherent state with large energy (large |α|), the photon number distribution P (n) becomes a wide
bell curve centered at n̄ = |α|2. Because this distribution is smooth and spreads across many integers, the
probability of having n photons (even) is almost exactly the same as having n+ 1 photons (odd). Therefore,
the positive and negative terms in the parity sum cancel each other out:

⟨Π⟩α = P (0) − P (1)︸ ︷︷ ︸
≈0

+P (2) − P (3)︸ ︷︷ ︸
≈0

+ · · · ≈ 0

Mathematically, the expectation value of parity for a coherent state is ⟨α|Π̂|α⟩ = e−2|α|2 . For example, if
α = 3, this value is e−18 ≈ 10−8, confirming the intuitive “perfect cancellation.” This will explain why the
Wigner function (understood as a parity expectation) of the vacuum state |0⟩ is zero far from the origin, this
is the topic of the next section.

4.1.4 The Wigner Function Definition and Intuition

In the previous sections, we referred to phase space several times to visualize the possible trajectories of
the system. Now, to fully characterize quantum states of a QHO in phase space, a nice tool is the Wigner9

9Nobel prize in 1963 for his contributions to the theory of the atomic nucleus and the elementary particles
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function, which serves as a powerful visualization tool for understanding state evolution. The Wigner function
W (x, p) is a quasi-probability distribution that represents a quantum density matrix ρ̂ in phase space. In the
context of a Quantum Harmonic Oscillator (QHO), regions where the Wigner function takes on negative
values directly indicate the presence of quantum behavior.

Intuition: The Topography of Quantum States

Think of the Wigner function as a topographic map of the quantum state in phase space.
• Hills (Positive): Where the particle is likely to be found (like a probability distribution).
• Valleys (Negative): This is where it gets weird. Negative probabilities don’t exist in the

classical world. A negative value in the Wigner function is a smoking gun for quantum interference
effects. It’s the signature that says “this is definitely not just a classical noisy system.”

Mathematically, the Wigner function is defined as

W (x, p) = 1
πℏ

∫ +∞

−∞
⟨x+ y|ρ̂|x− y⟩e−2ipy/ℏdy

Exercise 19: Wigner Function Norm

Show that the integral of the Wigner function over all phase space is normalized to unity:∫
W (x, p)dxdp = 1.

From this expression alone it can be hard to grasp the physics of it. From an intuitive perspective, the value
of the Wigner function at a given complex point α in phase space is proportional to the expectation value of
a displaced parity operator:

W (α) ∝ ⟨ψ|D(α)Π̂D†(α)|ψ⟩

Here, the parity operator is given by Π̂ = (−1)a†a (the parity of excitations), which can also be written
as e−iπa†a. The displacement operator is D(α) = eαa†−α∗a. For instance, the operator transformation
D†(α)aD(α) = a+ α demonstrates how displacement acts on the annihilation operator. Similarly, applying
the displacement operator to the vacuum state as D(α)|0⟩ = |α⟩ produces a coherent state. We will use
Wigner representations of states a lot in this last section, starting with some simple examples of dissipation.

Displacement Operator vs. Lindblad Dissipator

The displacement operator D(α) (which shifts states in phase space) should not be confused with
the Lindblad dissipator DL(ρ) (which describes environmental dissipation). In these notes, D always
denotes the displacement operator for phase space translations, not a dissipative process.

4.1.5 Examples of Dissipation

To illustrate Wigner representation from Lindblad master equations and to introduce the cat qubit as our
first example of bosonic code, we first look at cavities with photon loss.

4.1.5.1 Simple Photon Loss Photon loss or loss of excitation from the cavity to the environment is the
predominant type of error in QHO. When the dissipation operator is L = √

κ1a, the evolution of the system
is described by the equation

ρ̇ = κ1

(
aρa† − 1

2a
†aρ− 1

2ρa
†a

)
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As time progresses, the system settles into the vacuum state independently of the initial state, which means
limt→∞ ρ(t) = |0⟩⟨0|. In the phase space representation, such as a Wigner function, the state can be seen
spiraling toward the origin.

4.1.5.2 Locality in Phase Space of the Damped Cavity An important point that motivates the
study of bosonic modes is the locality of errors in phase space, such as photon loss. The Wigner representation
indeed reveals that for QHO, errors occurring at high rates are usually the result of local processes within
phase space. Mathematically, this behavior is captured by the Fokker-Planck10 Equation.

In the case of a damped cavity characterized by a loss rate κ1, the master equation ρ̇ = κ1Daρ can be
translated into its phase space evolution as

d

dt
Wρ(α, α∗) = κ1

2
∂2

∂α∂α∗Wρ(α, α∗)︸ ︷︷ ︸
Diffusion (broadening)

+ κ1

2

(
∂

∂α
α+ ∂

∂α∗α
∗
)
Wρ(α, α∗)︸ ︷︷ ︸

Global drift towards vacuum

The diffusion term leads to a broadening of the distribution over time. At the same time, global drift acts to
pull the state back toward the vacuum state |0⟩, which corresponds to the origin of phase space. Encoding
information in the Hilbert space of the QHO is a form of non-local encoding well suited to fight local errors,
just like quantum error correction, as we will see in the next lectures.

4.1.5.3 Driven Damped Cavity Let’s look at another example of QHO dynamics, this time a bit more
complex. When the system features both a drive Hamiltonian, given by H = ε1a

† + ε∗
1a, and the same loss

term as in the previous example L = √
κ1a, the master equation can be recast using a shifted operator a− α

as follows:
ρ̇ = D√

κ1(a−α)ρ

Here, the displacement α satisfies α = − 2iε1
κ1

, which is equivalent to κ1α
2 = −iε1.

To see this, consider the outlined mathematical derivation. First, we expand the driven master equation:

ρ̇ = −i[ε1a
† + ε∗

1a, ρ] + κ1(aρa† − 1
2a

†aρ− 1
2ρa

†a)

By carrying out algebraic manipulations, this master equation can be simplified and rewritten in terms of the
dissipator for a displaced operator:

ρ̇ = D√
κ1aρ+

[κ1α

2 a†, ρ
]

This driven-damped system stabilizes to a coherent state |α⟩ as defined in the previous section. >

4.2 Cat Code: Two-Photon Driven Damped QHO
Encoding information is not possible in a single photon driven damped oscillator, because the kernel of its
effective dissipation consists of only a single state. To enable information encoding, we require the kernel
of the dissipative dynamics to have higher dimension. We can achieve this by squaring the terms in the
Lindblad master equation, which intuitively results in a two-dimensional kernel. Such a configuration gives
rise to the formation of Schrödinger Cat states.

The Hamiltonian for this system is given by H = ε2a
†2 + h.c. The dissipation operator takes the form

L = √
κ2a

2. The equation of motion is expressed as ρ̇ = D√
κ2(a2−α2)ρ. At steady state, the displacement is

α = ±
√

−2iε2
κ2

. In phase space, the system stabilizes into two distinct lobes in the x-p plane, which correspond
to a superposition of two coherent states.

10Max Planck received the Nobel prize in 1918 for the discovery of energy quanta
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Physically, these systems are realized by coupling multiple resonators to induce nonlinear interactions through
4-wave mixing. The experimental setup includes two coupled oscillators, denoted as modes â and d̂, which
are connected to a drive line by means of a coupling capacitor. The drive Hamiltonian is Hd = εdd

† and
the interaction between the modes is mediated by 4-wave mixing. The effective Hamiltonian describing this
interaction is H = g2a

†2d+ g2a
2d†. For simplicity, this can be modeled with the operators mentioned above:

Heff = ε2a
†2 + h.c. and the effective dissipation operator Leff = √

κ2a
2.

In this system, two coherent states, |α⟩ and | − α⟩, are stabilized and can be identified with the logical qubit
states. The logical |0⟩L state corresponds to |α⟩, while the logical |1⟩L state corresponds to | − α⟩.

Intuition: Schrödinger Cat States

Why “Cat”? In Schrödinger’s thought experiment, the cat is in a superposition of “Dead” and “Alive.”
These are two macroscopic, distinguishable states.
Here, our “Dead” and “Alive” states are |α⟩ (oscillation with phase 0) and | − α⟩ (oscillation with
phase π) respectively. These are macroscopically distinct states of the field. A “Cat State” is a
quantum superposition of these two (|α⟩ + | − α⟩). In phase space, you see two distinct blobs (the cat
is definitely either dead or alive if you look classically) but with interference fringes between them
(the quantum proof that it’s both at once).

The even cat state, |+⟩, is proportional to |α⟩ + | − α⟩ and can be written as

|+⟩ ∝ |α⟩ + | − α⟩ ∝
∑

n

α2n√
(2n)!

|2n⟩

The odd cat state, |−⟩, is proportional to |α⟩ − | − α⟩ and is given by

|−⟩ ∝ |α⟩ − | − α⟩ ∝
∑

n

α2n+1√
(2n+ 1)!

|2n+ 1⟩

Exercise 20: Cat State Parity

Show that |+⟩ ∝ |α⟩ + | − α⟩ contains only even photon numbers by expanding the coherent states in
the Fock basis.

These logical states represent a qubit with its associated Bloch sphere illustrated in figure fig. 9.

Figure 9: Bloch sphere representation of the cat qubit, as a two-level system encoded in the infinite-dimensional
Hilbert space of a harmonic oscillator.
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Logical
State Notation Phase Space Representation

Zero |0⟩L ≈ |α⟩

One |1⟩L ≈ |−α⟩

Plus |+⟩L ∝ |α⟩ + |−α⟩

Minus |−⟩L ∝ |α⟩ − |−α⟩

A key objective is to suppress bit-flip (X) errors. Using coherent states that are well separated in phase space
causes their overlap, which produces errors, to become exponentially small. The overlap between two coherent
states |α⟩ and | −α⟩ is ⟨α| −α⟩ = e−2|α|2 As |α|2 increases, this overlap and therefore the probability of local
error processes decreases exponentially. Hence, the bit-flip time TX grows exponentially as |α|2 increases, see
fig. 10 from [9]. In contrast, the phase-flip rate ΓZ increases linearly with α2, see fig. 11 from [9]. Indeed,
increasing |α|2 also results in smaller interference fringes in phase space, making the system more susceptible
to phase-flip (Z) errors. The ratio between phase-flip and bit-flip error probabilities has reached values of up
to

PZ

PX
= 107 at |α|2 = 10

Exercise 21: Coherent State Overlap

Calculate the overlap |⟨α| − α⟩|2 and confirm that it decays exponentially with |α|2.

One possible strategy for a Fully Protected Qubit involves considering simpler quantum error correction
code, specifically 1D instead of 2D codes. This topic will be discussed in detail in the QEC lecture. Other
bosonic qubits exist, but we are not going to discuss them in this lecture. We only mention that Cat code
belongs to a broader family of Rotationally Symmetric Codes (rotational symmetry referring to the Wigner
representation). This family includes the 4-Component Cat Code, where four coherent states are used to
encode the logical information (|0⟩L ∝ |α⟩ + |iα⟩ + | − α⟩ + | − iα⟩), allowing for better error detection of
photon loss. Another code robust against single photon loss is the much simpler Kitten code defined with
|0⟩L = 1√

2 (|0⟩ + |4⟩) and |1⟩L = |2⟩, where a photon loss event changes the parity of the logical states. Finally,
we have to mention a translationally symmetric code known as the GKP (from Gottesman, Kitaev and
Preskill) code. This code encodes a qubit in grid states of light and is robust against small displacements in
phase space. We end this section by focusing on operations that preserve the noise bias of cat qubits, called
bias preserving operations.

4.3 Bias Preserving Operations
Having described how bosonic modes are encoded, we now discuss the process of performing operations on
them, focusing in particular on the cat code. When working with qubits that have biased noise, it is essential
that operations do not convert the suppressed error type into a more dominant one.
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Figure 10: Exponential increase of the bit-flip time with the cat size.

Figure 11: Linear increase of the phase-flip rate with the cat size.
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A standard Hadamard gate is thus not suitable in this context because it swaps X and Z errors, thereby
destroying the noise bias. Instead, only certain operations are permissible: Z(θ) rotations, Pauli X, CNOT
(CX) gates, and Toffoli (CCNOT or CCX) gates.

The parity state preparation P|+⟩ is implemented by starting from the state |0⟩, conserving parity throughout
the operation, and finally arriving at the state |+⟩. A Z(θ) rotation is described by the master equation

ρ̇ = −iεZ [a+ a†, ρ] + κ2Da2−α2ρ

where εZ is a real parameter. To effectively maintain protection of the code space, it is required that κ2 is
much greater than εZ . To implement a logical X gate while still preserving the noise bias, the quantum state
is rotated within phase space. The evolution of the system during this operation follows the equation

ρ̇ = −i[− π

T
â†â, ρ] + Dq̂−α(t)ρ

in which α(t) = αeiπt/T . The mechanism relies on physically rotating the state in the complex plane over a
period T . During this rotation, strong dissipation as described by the D term provides error protection by
keeping the state pinned to the appropriate moving coherent states and thus suppressing bit-flip errors.

The CNOT gate is realized as a conditional operation that depends on the state of the control qubit, labeled
as qubit 1. In operator form, the CNOT can be expressed as

CNOT = 1
2(I1 + Z1)I2 + 1

2(I1 − Z1)X2.

An equivalent projection representation is

≈ |α⟩⟨α| ⊗ I2 + | − α⟩⟨−α| ⊗X2.

This means that if the control qubit is in the |α⟩ state, the target qubit remains unchanged, while if the
control is in the | − α⟩ state, an X gate is applied to the target. The evolution of the system during the
CNOT gate is governed by the equation

ρ̇ = −i[Ĥ, ρ] + κ2Dâ2
1−α2

1
ρ+ κ2D

â2
2− 1

2 α(â1+α)+ 1
2 αe

2iπt
T (â1−α)

ρ.

where Ĥ = 1π
2T

â1−α
2α ⊗

(
â†

2â2 − n̄
)

+ h.c. to compensate for non-adiabatic errors, just like for the X gate.
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