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Light, and in particular its constituent the photon, looks like a good candidate to
store quantum information. There are several attractive features in favor of using light
to encode qubits. First, as it travels at the speed of light, it is the qubit of choice for
communication and hence to interconnect quantum processors. Second, light propagates
with nearly no absorption in many materials: for example the attenuation in optical
fiber is 0.2-0.3 dB/km at telecom wavelengths, meaning that “7} can be long”. Also
the polarization for the light can be maintained quite well (meaning “long 75”). More
generally, photons are quite immune to electromagnetic perturbations. Third, from a
technological point of view, integrated photonics is well developed at the industry level,
thus facilitating the transition towards industrial photonic quantum processor, when the
route finally becomes clear.

There are two ways to store qubits on light. The first one relies on single photons
and requires single-photon sources and detectors. The second uses weak coherent pulses
and manipulates the quadratures of the field. Both approaches face however the same
difficulty: photons interact only very weakly, making it challenging to build entangling
gates. We will see in this lecture how to circumvent this problem.

Despite this main difficulty, several companies follow the optical approach such as
Quandela (France), PsiQuantum (USA) and Xanadu (Canada). Today, they often define
the state-of-the art for the performances of the hardware, but a lot of academic research
explores the many open questions remaining to be solved for the photonics approach.

1 Linear optics quantum computing using single pho-
tons [1]

We start by the first approach relying on single photons, assuming that we have all the
necessary hardware (see Sec. 3). This first approach makes use only of linear optical
elements, and the non-linearity necessary for entangling operations is provided by a
measurement: it leads to a non-linear update of the photon wavefunction and acts as
an effective photon-photon interaction.

Qubit encoding. They are two standard ways to encode the qubit on a photon (see Fig.
1). The first one uses the two orthogonal polarizations perpendicular to the wavevector
k, for example |0) = |H) ,|1) = |V) (polarization encoding). The second one, convenient
in particular when using integrated photonics technology, relies on two paths (propaga-
tion modes) a and b of the photon: |0) = |n, =0,n, =1) and |1) = |n, = 1,1, = 0),
where n,; are the number of photons in the modes a, b (dual rail encoding).
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Figure 1: (a) Polarization and (b) dual rail encoding. (c) Action of a beamsplitter.

Exercise 1. Use a polarization beamsplitter to show how to convert the polariza-
tion encoding into a dual-rail encoding and vice-versa.

Beamsplitters and phase shifters. These are the main linear components used in
optics. The beamsplitter BS (transmission and reflection coefficients ¢, ) implements
the unitary transformation Ups of the input modes a,b into the output modes ¢, d in
the following way (Fig. 1c):

¢ ~ 7 . ~ t —r - toar
(CZ) = UBS (i)) with UBS = (’I“ " ) or UBS = <iT t) . (1)

with a, l;, é,ACzAthe corresponding annihilation operators obeying the commutation rules
[a,at] = [b,07] = [¢,¢7] = [d,dT] = 1 and any cross commutators, e.g., [a,¢™] = 0.

Energy conservation imposes |r|> + [¢|*> = 1. Several conventions are possible for Ugg, as
shown above. A phase plate implements the following operation:

6= (g o) - @

Let us recall the action of a 50/50 beamsplitter on two important states of the field.
First, a single photon in mode a, with no photon in mode b:

L0 - L
E(C++d+)|0,0>—\/§

This operation entangles the modes ¢, d (yes... with just one photon...). If two identical
photons arrive on the BS, one in each input port, we obtain:

1,,0,) = a™)0,0) = (11¢, 04) + 10, 1a)) - (3)

. 1 1 . 1
1o, 1,) = atht|0,0) = —(¢" + dH)—=(¢" — d*)[0,0) = —
|14, 1s) 0,0) \/5( )\/5( )10,0) 7

This is the Hong-Ou-Mandel effect that you have seen in Quantum Optics.

(‘2670(1) - |0072d>) : (4)

Single qubit gates. Combining BS and phase shifters allows one to perform any
single-qubit operation using the dual rail encoding. For the polarization encoding, one
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Figure 2: Optical setup implementing a Hadamard gate in the dual rail encoding. The
grey rectangles represent phase shifters with ¢ = —m /2.

simply uses a half waveplate oriented with an angle # with respect to the horizontal
axis, which performs the unitary transform:

Upol _ (cos& sin @ > ‘ (5)

sinf —cos@

Exercise 2. Show that the setup in Fig. 2 implements a Hadamard gate in the
dual rail encoding. Use the second convention in (1) for Usgs.

Probabilistic two-qubit gates. This is where the difficulty lies, as photon in free
space do not interact. We use instead of the interaction a measurement, which ensures
a non-linear update of the wavefunction. The price to pay is that the approach is now
probabilistic. The general framework was introduced in 2001 by Knill, Laflamme and
Milburn [3] and we summarize it below.

First, we construct a non-linear phase shifter which applies the following transfor-
mation:

Vi) = aln=0) +Bln=1) +7[n =2) = [tow) = a|n =0) + Fn=1) —7!71:22 ]
6
i.e. we flip the sign of the state when two photons are in the same mode. To implement
this transformation, we use the optical setup represented in Fig.3(a): it requires two
auxiliary qubits in modes a, b, on top of the initial state we want to act on. One of them
is in state |1), the second one in |0). Two detectors A and B are placed at the output.
When detector A clicks, it heralds the preparation of [1)qy), i.e. the successful operation
of the non-linear shifter. To understand how this works, we consider separately the cases
where [¢y,) contains either 0, 1 or 2 photons.
When [¢;,) = |n = 0), the only way to obtain a click on detector A and no click on
B is that the photon a has either been reflected on BS1, BS2 and BS3, which occurs
with an amplitude y/R; Ry R3, or that it is transmitted by BS1 and BS3 (amplitude
/(1 = R;)(1 — R3)). The amplitude corresponding to a click is thus Cy = v/RiRo R +
/(1 = Ry)(1 — R3). When instead [¢;,) = |n = 1), a click on detector A only corre-

SpOIldS to the amplitude Ol = —\ RQ(\/ R1R2R3+\/(1 — Rl)(l - R3))+(1—R2)\/ R1R3.
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Figure 3: (a) Optical setup implementing the non-linear shifter (NS). Here R; are the
reflection coefficient in intensity. (b) Setup to implement a probabilistic CZ gate.

Finally for |¢;,) = |n = 2), a click on detector A only corresponds to the amplitude
Cy = Ro(vVRiRyR3 + /(1 — R1)(1 — R3)) — 2¢/Ry(1 — Ry)v/R1R3. The non-linear
shifting operation imposes Cy = C; = —Cy; = C and a tedious calculation yields
Ry = (V2 — 1)2. The largest value of C is obtained for Ry = R3 = (4 — 2/2)7".
It gives the upper limit for the probability of success of the shifter, p = C? = 1/4.

Exercise 3. Explain how you get the expression of C; and (5. If you have some
courage calculate Ry, and R; = Rj.

This non-linear phase shifter is now used to implement a probabilistic CZ gate with
the circuit shown in Fig. 3(b).

Exercise 4. By considering the action of the circuit on each of the state |0, 0), |0, 1),
11,0), and |1, 1) show that it implements a CZ phase gate |Q1, Q2) — (—=1)917%2 |Q1, Q).
Be careful with the definition of the modes carrying 0 and 1. For the BS, take:

(1)

As the circuit involves two non-linear shifters, the probability of success is p =
(1/4)> = 1/16. This of course makes the realization of a long circuit unpractical, as
the probability of getting the result after the application of N gates is p?¥. The KLM
framework proposes a solution to this problem.

The KLM approach. It relies on near deterministic gate teleportation. As a reminder
(see Lecture 3 from course on Physics of Quantum Information), teleportation consists
in sending a qubit |[¢) , = a|0) + 3|1) between two partners Alice (A) and Bob (B)
by performing a measurement followed by a classical transmission from A to B. More
precisely, A and B share a Bell pair encoded on two photons 2 and 3, for example:
)93 = (|01)95 — [10)45)/v/2. Alice performs a Bell measurement (see below) between
her qubit in |¢)) , and photon 2. She gets one of the following results (m,n): (11), (10),
(01) or (00) corresponding to each of the Bell states:

|¢+>12 = <|01>12 + |10>12)/\/§ ) |¢—>12 = (|01>12 - |1O>12)/\/§ )
|¢+>12 = (’00>12 + |11>12)/\/5 ) |¢—>12 = (|00>12 - |11>12>/\/§ .
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Figure 4: (a) Sigle-qubit gate teleportation. (b) CZ gate teleportation.

Alice then sends the result (m,n) to Bob, who applies a unitary operation Uy to his
qubit, in order to restore the initial state of Alice’s qubit on his own qubit now encoded
on photon 3.

UH = XZ,UOl == Z,Ulg = X,UOO - ﬂ .

Teleporting a single-qubit gate means that if you apply on photon 3 the unitary operation
UM, Bob’s qubit will be in the state X™Z"UW |1)4) (see Fig. 4a).

Teleporting a two-qubit gate is more involved and relies on the scheme shown in
Fig. 4(b). You want to apply a two-qubit gate between photons without having them
interact: photon 1 encodes the control qubit |1).) and 6 carries |[¢;). You need as a
resource two pairs of entangled photons. You apply the two-qubit gate (here a CZ)
between photon 3 and 4, and then apply the unitaries Uml,m and Umwz. The end result
is that the photons 3 and 4 have undergone the CZ gate and are in the state Ucg|t) [1y).
Of course the CZ gate between the resource photons 3 and 4 is probabilistic. However,
you perform the teleportation only when the heralding signal tells you that the CZ is
successful. Only then do you teleport the states: you apply the two Bell measurements
and send the classical signal. The CZ gate now becomes deterministic: the probabilistic
aspect, still present, comes from the “off-line resources” (the two Bell states) that do no
contribute directly. The two photons 3 and 4 that have undergone the teleported gate
can now be used in a next CZ gate by the same mechanism. In order for the scheme
to work you do need however some delay lines or means to store photons [i).), 1), 1-4
so that when the CZ is successful, you have the time perform the Bell measurements
followed by the teleportation.

Everything seems alright: we have a way to apply sequential CZ or CNOT gates in a
deterministic way, albeit at the price of preparing extra resources (the Bell pairs). The
only problem is that the Bell measurement has a success probability of 1/2 as it is not
able to distinguish between the states |1, ), [1)_)...

Exercise 5. The Bell measurement setup is shown in Fig. 5(a) for the dual rail
encoding. Show that it allows distinguishing between states |10y ), |[¢)_) but not between
|¢4+) or |¢_). Calculate the probability of success.

Exercise 6. Same question for the polarization encoding, with the setup shown in
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Figure 5: (a) Optical setup implementing a Bell measurement in the dual rail encoding.
(b) Bell measurement in the polarization encoding.

Fig. 5(b).

The probability of success of the teleported CNOT gate is thus (1/2)* = 1/4 as it in-
volves the teleportation of two qubits, and it looks like we are back to the initial problem
of probabilistic gate. However, KLM proposed a method to make the Bell measurement
probability arbitrary close to 1 by using n auxiliary photons prepared in a state |t,).
The exact way of doing this is quite involved and we will not detail it, but they calculate
a success probability of the Bell measurement of n/(n + 1), meaning that using these
extra photons, the probability of the CNOT gate is now penor = [n/(n + 1)]2. For
example, for n = 2, you would need 2 photons in 4 auxiliary modes (dual rail encoding)
in the state [ty) = (]1100) + |1010) + [1001))/+/3. If you want a fidelity pexor = 0.99,
you need 200 auxiliary photons (prepared in a very specific state)!

Measurement based quantum computing approach. As shown above, the KLM
protocol is very greedy in terms of resources. In 2001, Robert Raussendorf and Hans J.
Briegel, proposed a different approach, called measurement based quantum computing
(MBQC) [4]. It relies on a resource state (called cluster state or graph state) which
features entanglement between the qubits. A given quantum algorithm is now a se-
quence of measurements on each qubit sequencially, where the result s; at step 7 fixes
the measurement one has to perform at step i+ 1 (adaptative measurement). The result
of the algorithm is then given by the last measurement, and at the end of the sequence
the cluster state is destroyed. In this approach no gate is applied on the qubits, and
one relies only on a deterministic sequence of measurements which depend on the algo-
rithm. However, the construction of the cluster state in the photonic approach is, so
far, probabilistic, as we detail below.

The authors of Ref. [4] showed that any single-qubit gates and a CNOT gate can be
generated in this way, thus ensuring the equivalence between MBQC and the traditional
gate based model. Let us first show that we can implement any single qubit operator
of the form U(a,ﬁ,’y) = R.(a).R.(8).Rx(v) using the MBQC approach. We rely on
5 qubits, initially prepared in the state [¢1) ® |+), ® |[4+); @ |+), @ |+)5, where [¢h)
is the qubit we want U to act on. To prepare the cluster state, we apply CZ gates
between each adjacent qubits. The sequential measurement of each qubit is done in the
|4)y = (|0) € |1))/v/2 basis. If the result of the measurement on qubit j gives 1+,
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Figure 6: (a) Principle of MBQC where a sequence of measurement and feedforward
implements a given algorithm. (b) CNOT gate in the MBQC approach. From [4].
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Figure 7: (a) Principle of entanglement swapping by Bell measurement. (b) Fusion of
two entangled states to generate a larger one.

then s; = 0, and s; = 1 otherwise: this is the result of the measurement which we use to
define the one at step j+1. The sequence is then the following: (1) measure qubit 1 with
6, = 0. The result is s1; (2) measure qubit 2 with 6, = (—1)* «, and get sy; (3) measure
qubit 3 with 3 = (—1)*2, and get s3; (4) measure qubit 4 with 64 = (—1)* %3~ and get
ss. At the end, the qubit 5 is projected onto the state |15) = X52+51 Zs14s30 (a, B, 7) ).

To realize a CNOT gate between 2 qubits, one uses a cluster state containing 4 qubits
arranged as shown in Fig. 6. Prepare first the state |i), |7), |+) [+)5, where 4,5 € 0,1
are the states of the control and target qubits. Then apply the CZ gates between all
the connected pairs to obtain the cluster state. Read out sequentially 1,2,3 and 4 and
get each time the result s,. At the end of the sequence, you find that qubit 3 is in the
state |i; @ i4); and thus carries the results of the CNOT gate between qubit 1 (control)
and 4 (target).

The cluster state is usually hard to write explicitly when the number of qubits is
large. However the procedure to construct it is easy to define: one simply apply CZ
gate between adjacent qubits, as show in the examples above. The cluster state is uni-
versal, in the sense that any algorithm can be run using the same state. However, its
construction is probabilistic in the photonic approach, as the CZ gate is probabilistic.
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Figure 8: Principle of a gate based on the Kerr effect in dual rail encoding.

In the photon based quantum computing community, a lot of research is dedicated to-
day to devise efficient construction scheme of the cluster state. A popular approach
relies on fusion gates, whose basic ingredient is entanglement swapping, which we now
describe. The procedure is shown in Fig. 7(a): you start from two Bell states [i12)
and |¢34) and perform a Bell measurement on photons 2 and 3. Depending on the out-
come of the measurement, the photons 1 and 4 are now entangled in a specific Bell state.

Exercise 7. Show that this is the case. Take [12) = [11);, and [¢s4) = |¥1)4,.
Calculate the success probability.

Fusion gates are the generalization of entanglement swapping when the two states to
be combined are not simply Bell states, but more complicated ones such as GHZ with
more than 3 photons. The generic scheme is shown in Fig. 7(b). Cluster states of up
to 6 photons have been recently demonstrated, with a success rate of 2 mHz (1 state
generated every 500 sec) [5].

As a conclusion of this first section, the linear approach to optical quantum comput-
ing faces a significant challenge in scaling up, owing to its probabilistic nature. This is
the reason why a lot of research is also devoted to making photons interact determinis-
tically, as we now discuss.

2 Non-linear optics quantum computing with single
photons

In this second approach, we go back to the traditional gate based circuit model and rely
on a direct photon-photon interaction to build deterministic gates. Such interaction can
be obtained in a non-linear medium, for example one exhibiting Kerr non-linearity. In
the dual rail encoding, a phase gate corresponds to the scheme represented in Fig. 8.
The action of the Kerr non-linearity is represented by the Hamiltonian Hyer = h¢ nins,
where 7; = aa; is the photon number operator. The unitary evolution of the state
|Q1,Q2) is set by the length L of the Kerr medium and the phase velocity v, of the
photons propagating through it, yielding U = exp|—tHgerr L /v,

To relate the phase ¢ to the non-linear properties of the medium, recall that the
non-linear polarization for a Kerr medium is related to the linear and non-linear sus-



ceptibilities x(13) by

P = eoxWE + ¢ox®|EB|*E + ... (8)
The index of refraction is thus for y < 1
1 3)

where E; and F, are the amplitude of the field associated to the two interacting photons
(cross-Kerr effect). Hence the non linear phase is

®3)
¢=%%r&@§.

Everything looks good, apart form the fact that the values of the x® coefficient of
most Kerr media are very small: In LiNbO3, x® ~ 1072 m2/V?; for organic polymers
x® ~ 10716 m?/V? and for the largest reported values in atomic medium in an elec-
tromagnetically induced transparency (EIT) condition, x®*) ~ 1077 m?/V2. To get an
estimate of the phase ¢ that these non-linearities lead to, we calculate the field of a single
photon in the following way: hw = eycE?mw? L., where w is the radius of the cylindrical
mode we suppose the photon to be in, and L. is the coherence length of the photon,
which depends on the source generating it. Taking as a source an atom or a quantum
dots with a decay time 7, ~ 10ns yields L. ~ ¢7. ~ 3m. For a wavelength around 1 pum,
we obtain F ~ 3 V/m and ¢ ~ 107! in a polymer. Hence usual non-linearities are too
weak to envision using them to build a phase gate.

Two main ideas have been proposed, and partially demonstrated, to enhance optical
non-linearities using either a cavity QED approach or an Rydberg interaction induced
non-linearity.

The CQED approach. Here, the general framework is the Jaynes-Cumming model
describing a two-level atom (states |g),|e), transition frequency wp) coupled to the
optical mode of a cavity (frequency w.). Recall that for a detuning A = w. — wp and a
single-photon Rabi frequency €2, the Hamiltonian in the rotating wave approximation
is

A /
HJC = —h 5,3 —+ th<(3'+d -+ a'_d+) Wlth th — deg hwc . <1O>
2 QEOV

The eigenenergies and corresponding eigenstates of the coupled atom-field system are

A2

E. (n) = h\/IqLQ%n with |n,+>:cos§|g,n>+sing|e,n—1> ; (11)
A? ) , .0 6

E_(n) = —h I+an with |n,—>:—sm§|g,n>+cos§|e,n—1> , (12)

where n is the number of photons in the mode and tanf = 2Q;1/n/A. Let us consider
the dispersive regime where |A| > Q;y/n. A Taylor expansion of the energy yields

hA  hO32 hQY
E+(n)%7+fln—A—;n2 and |n,+) = |g,n) . (13)

9



The last term ressembles the Kerr non-linearity we are looking for. Hence, the phase
difference accumulated for a state containing n = 1 or n = 2 photons is

¢ = (E1(2) —2B.())t/h = ——5L . (14)

Taking €2;/(27) = 1 MHz, A = 1082, and an interaction time ¢t = 1 us, we get ¢ = T,
just what we need to build a CZ gate. The key ingredient that we used here is the
anharmonic spectrum of the Jaynes-Cumming model. For the above argument to be
valid though, we need to work in the so-called strong coupling regime Q3%/(xI') > 1,
where k is the cavity linewidth and I' is the linewidth of the atomic transition.

Non-linearity induced by Rydberg interactions. The principle of this non-linearity
combines Electromagnetically Induced Transparency with the Rydberg blockade that we
studied in Lecture 2. It uses a cloud of atoms (usually laser-cooled, for example here Rb)
with density A and involves three atomic levels |g) , |e) and |r) in a ladder configuration,
as represented in Fig. 9. The low transition has a wavelength of 780 nm (D2 line of Rb),
and the higher one 480 nm. Here |r) is a Rydberg state. The Rabi frequency on the
e — r transition is 2. and dominates all the other (control field). The signal field on the
g — e transition will be the one containing either 1 or 2 photons. We work here in the
dispersive regime of EIT to illustrate the working mechanism, i.e. we set w. + ws = wgy,
but the fields are detuned by A with respect to the state |e). If the signal field contains
only one photon, it goes through the medium without acquiring a phase: this comes
from the fact that the index of refraction of a medium at an EIT condition is zero, and
the transmission is 1. If now two photons are in the signal field, the first one excites
an atom to the Rydberg state: this shifts the energy level of all the atoms in a sphere
of radius R, = (Cs/Q)'/% (Rydberg blockade). Thus the EIT condition is no longer ful-
filled for all these atoms and the second photon travelling in the blockade sphere, with
a frequency detuned by A with respect to the e — g transition, sees a medium consisting
of two-level atoms only, as the e —r transition is now irrelevant. The phase accumulated
during its propagation is thus

¢ = %Xmle with  xam ~ NZ—Z% :
Introducing the optical depth OD, = N67/k?R,;, we find ¢ = OD,I'/A. If we take
realistic values for R, = 5 (corresponding to a Rydberg state 60S), OD, = 10 and
['/A = 0.1 we obtain ¢ ~ w. If the principle exposed above is correct, the detailed
analysis is significantly more involved: one has to take into account the propagation
of the light pulse associated to a single photon in the medium and its conversion into
so-called dark state polariton propagating at the group velocity.

The idea of combining EIT with Rydberg interactions was proposed and demon-
strated in 2008 by C.S. Adams at Durham university (UK). Recent demonstrations of
Rydberg-induced phase gate lead to fidelities around 40%, and are usually obtained by
placing the atomic cloud in an optical cavities. A lot of research is still necessary to
make this approach fully functional.

(15)
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Figure 9: Principle of a non-linearity combining Electromagnetically Induced Trans-
parency and Rydberg interaction.

3 Hardware for single photon based quantum com-
puting

The linear and non-linear approaches to discrete optical quantum computing require:
(1) a source of identical single photons with a high flux; (2) high efficiency single photon
detectors; (3) beamsplitters; (4) waveplates, phase shifters, modulators...

For the two last items, one has to distinguish lab experiments that usually rely on
bulk free space optics, while the industry rather uses fully fibered or integrated optics
solution. For example, beamsplitters, modulators or polarization control devices exist
in fibered versions, and are highly efficient especially at telecom wavelength as used
everywhere in communication technologies. Here we concentrate on what remains a
challenge today: the source and the detector.

Single-photon sources. There are two kinds of sources; the first one relies on spon-
taneous parametric down-conversion where a pump laser at frequency w, propagating
in a x® medium generates photon pairs |n, = 1,n, = 1) in two modes a and b, with
frequencies w,, fulfilling w, = w, +wy. The wavevectors must satisfy the phase matching
condition k, = k, + k;. Other higher order non-linear processes are also possible like
spontaneous four wave mixing. In this scheme, one of the two photons is detected and
the positive detection in, say, mode b heralds the presence of a single photon in a, thus
the name heralded single photon source. More precisely, the x©®) non-linear medium is
described by the Hamiltonian

H = hix(a"b* +ab), (16)
with I, the pump laser power. Its action on the vacuum state |04, 0p) gives
[Vab) 2 [0a;, 0p) + €14, 1p) + €2 |24, 2) + ... (17)

with € oc [,,. This indicates that pumping harder leads to unwanted pairs of pairs, and
therefore there is a limit to the flux of emitted single photons. In practice it is less

11
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Figure 10: (a) Quantum dots as a single photon emitter. (b) Cavity made of Bragg
mirrors into which the quantum dots is placed. Figures from [7].

than ~ 107/s. A nice feature though is the easy integration of these type of source on
photonic chips. The american company PsiQuantum uses this technology.

The second type of source is in principle deterministic: it is based on individual
quantum emitters like atoms or ions, or solid state emitters (NV centers or quantum
dots). Let us describe the quantum dots approach used in particular by the french
company Quandela. It relies on building a three dimensional semi-conductor structure
that acts as an essentially infinite potential well for the electrons. The structure is
obtained by inserting InAs into GaAs which have different band gaps (around 1eV).
The dot is excited by laser pulses and photons are emitted at a wavelength around 900
nm. However the emission occurs in a large solid angle, resulting into a low collection
efficiency. The way around consists in placing the quantum dots inside a cavity made
of high reflectivity Bragg mirrors. The Purcell effect enhances the emission in the mode
of the cavity by a factor 3 = F,/(1 + F,), where F, = (3/47?)(A/n)*(Q/V') with n the
index of refraction of the material, V' the volume of the cavity and @ its quality factor.
The photons coming out of the cavity in a given direction can then be efficiently coupled
to a fiber. Quandela obtains in this way rate of single photons around 80 MHz, and the
efficiency of the source is 65%.

Exercise 8. Quandela measured a reduction of the lifetime of the quantum dots
from 1.3 ns in free-space to 160 ps when placed in the cavity. The emission wavelength
is 890 nm. Calculate the Purcell factor F),. If the quality factor is @) = 12000, estimate
the volume of the cavity. The index of refraction of the material is n &~ 3.5. Calculate
B. Why is the efficiency only 65%?7

To quantify how close a given source is to an ideal single photon source, one uses
the intensity correlation function (in steady-state)

gO(r) = (at(t)at(t+ m)a(t + )a(t)) ‘
(a*a)?

This quantity counts the number of coincides one obtains at time ¢ and ¢t + 7. A
good single photon source should have ¢g®(0) ~ 0. To measure it, one implements
the optical setup shown in Fig. 11: during a time bin At, one measures the num-
ber of coincidences N, obtained on the two detectors, and normalize by the number of

(18)
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Figure 11: (a) Hanbury-Brown and Twiss setup and measured g‘® (0) for a quantum dot
photon source. (b) Examples of HOM signal for three different quantum dots source.
Figures from [6].

counts N5 on each arms during the same time bin. Then ¢®(0) = N./(N;N). Quan-
dela obtains ¢®(0) < 0.01 with its quantum dots source, while PsiQuantum reports
g?(0) =3 x 1073

Exercise 9. Show that ¢ (0) = 2P,/ P2, where P, is the probability that the
field contains 1 or 2 photons. How much is it for a weak coherent pulse?

Exercise 10. Calculate g (0) for the single photon state in mode a resulting from
the heralding on mode b of the state (17) produced by spontaneous downconversion.

The second important property of the source is how identical the emitted photons
are. As we saw in the linear quantum computing approach, an essential ingredient is
the Hong-Ou-Mandel two-photon interference on a beamsplitter. Preparing the state
(4) requires the two photons at the input of the beamsplitter to be exactly in the same
spatio-temporal mode. If this is not the case, the output state will have a small detri-
mental |1., 14) contribution. One can describe the temporal mode of the field into which
a two-level emitters emits a single photon by the function E(t) = e 1*/2 e=™0t where I'
is the linewidth of the transition and wy its frequency. If for any reason wy fluctuates
(phonons for a solid state emitters for example), the photons will not all be produced
in the same temporal mode. To quantify this, we delays one photon with respect to a
following one and we count the number of coincidences obtained on detectors ¢, d. It
should be close to zero for nearly identical photons, due to the HOM effect. Examples
are shown in Fig. 11(b). In practice one rather quotes the contrast of the "HOM dip”.
Quandela reports 94% for a source operating at 5K to reduce the influence of phonon
induced dephasing, and PsiQuantum gives 99.5%. Reference [7] gives a nice introduc-
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tion to single photon sources and their characterization.

Single-photon detectors. Before 1980’s, most of the single photon counters used in
quantum optics were photomultiplier tubes, with poor quantum efficiency in the IR.
In the 80’s people started to use single photon avalanche photodiodes (SPAD) that are
semi-conducting PN junction inversely polarized. A photon propagating through the
central part will be absorbed and create an electron which is accelerated by the inverse
voltage up to a kinetic energy large enough to ionize surrounding atoms. It generates
an avalanche of electrons, which is then stopped by an appropriate circuit lowering the
inverse voltage. A single photon therefore generates a pulse of charges of a few ns which
is easily detected. The quantum efficiency of these detectors is above 50% in the visible
for Si-based versions. They usually feature a dead-time of about 10 ns following the
detection of a photon, during which it cannot detect another one. Besides, it cannot
resolve the number of photons.

More recently appeared photon number resolving detectors based on superconducing
nanowires (SNSPD). The idea is to run a current through the superconducting wires
maintained just above the critical current. When a photon is absorbed somewhere on
the wire it locally heats it, and the current has to be concentrated outside this region,
thus increasing the current density above its critical value: the whole wire becomes
resistive and the voltage across the wire increases sharply. Adjusting the critical current
allows one to resolve up to 5 photons. These detectors are however less handy to use
and require a closed circuit of liquid He to maintain the superconductivity of the wires.

4 Continuous variable quantum computing

We finish off this overview of optical qubits by mentioning very briefly the continuous
variable approach, which is a world in itself. It relies on weak coherent pulses of light,
i.e. attenuated laser beams, easier to generate than single photons. The price to pay is
the difficulty to perform the single and two-qubit gates.

Recall that the mode of an electromagnetic fields is equivalent to a harmonic oscil-
lator, and therefore can contain an infinite number of excitations. Coherent states are
superposition of photon number states [n). The electric field operator E can be written
in terms of its quadratures X and P as:

E=&,(Xcoswt+ Psinwt) with [X,P] =i, (19)

and where &, = /hw/(2¢)V). A coherent state is represented in phase space by an
arrow featuring a blurring end to indicate the intrinsic vacuum fluctuations resulting
from APAX > 1/2 (Fig. 12a).

There are several ways to encode qubits. The first one consists in encoding on
coherent states with opposite phase: |0) = |a) and |1) = |—a)(Fig. 12a). This qubit is
quite robust to bit flip errors, whose probability is reduced by (—ala) ~ exp(—2|a/?).
Performing a single qubit gate like the Hadamard gate is however challenging, as it
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Figure 12: (a) Phase space representation of a coherent state. (b) Qubit encoding on
two coherent states. (c) Phase space representation of a GKP state.

amounts to preparing Schrodinger cat states

1
|+) = m(@) +|=a)) . (20)

This can be done but requires using non-linear media which generate optical squeezing
and conditional measurements. Two qubit gates are also possible

The second type of encoding also aims at being more resilient to errors and uses
the idea of logical encoding that we will explore i n more details in the last part of
the course on quantum error correction. Popular states are Gottesman, Knill, Preskill
(GKP) states:

0, =D X =2n/m) ; [p=> [X=@2n+1)V7) . (21)

In phase space, they correspond to a grid, as shown in Fig. 12(c). One can show
that gaussian operations (e.g. rotations in phase space, squeezing of the quadrature...)
applied to GKP states allows for universal quantum computing. The first experimental
demonstration of (small...) GKP states in optics is recent and requires a source of
squeezed vacuum, beam splitter and conditional measurements. [9].

Although continuous variable quantum computing is actively explored in optics,
today it is much more advanced in circuit QED using microwave photons, as we will see
in Lecture 4.
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