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Atoms are natural objects to use for performing quantum computing. As seen in the
previous lecture, the main requirements for performing quantum computing are (1) high
quality qubits, and (2) a large quantity of qubits. Atoms match these two requirements.

First, the electrons gravitating around the nucleus possess well-defined energy levels
governed by the laws of quantum mechanics. Although they intrinsically have more
than two energy levels, over the last 50 years atomic physicists have developed methods
to prepare, measure, and control a subset of these energy levels in order to create and
manipulate qubits. Such control enabled the construction of the most precise clocks
developed by humankind. These instruments are nowadays for example used to measure
time (definition of the second in the International System of Units), or to measure other
quantities related to time, such as precise measurement of the gravitational field.

Second, atoms of a given species are all identical. This means that all the qubits will
interact in exactly the same way with their environment, a crucial feature for scaling
up in qubits number while preserving high quality qubits. Further, we will see next
that the commonly used species are naturally present on earth. As one gram of matter
holds ~ 10%* atoms, it means that, in principle, very few resources at the qubit level are
necessary to build efficient quantum computers.

This lecture describes two currently leading platforms for performing quantum com-
puting using atomic qubits: neutral atoms in optical tweezers, and trapped ions. These
two platforms are based on the same elementary particle (the atom), and use the same
elementary laws to manipulate and process quantum information (light-matter interac-
tions and atomic physics). The aim of this lecture is to present the key working principles
of these two platforms, from the qubit isolation and manipulation to the gates operations.

Atomic qubits platforms encode quantum bits into the energy levels of electrons
gravitating around the nucleus. Among all the possible states of these electrons, two
states, which we call |0) and |1), are selected as a qubit basis.

We will first detail how these platforms isolate the qubits, which will motivate the
choice for specific atomic species. We will then describe how these atomic qubits can
be manipulated for the aim of performing quantum computations, and the typical qubit
quality that is reached, defining the choice for the best qubit encoding amongst the
atomic qubit electronic levels. We will then detail how to implement the gates that
were introduced in Lecture 1: single-qubit gates, and two-qubit gates. We will finally
summarize the typical nowadays performances of these platforms.



1 Isolation of atomic qubits via trapping

In order to ease manipulation, atomic qubits are located at controlled positions in space.
In other words, atomic qubits are individually trapped. As the trapping techniques
strongly differ between neutral atoms and ions, we successively describe them.

1.1 Trapping neutral atoms using optical tweezers

In order to trap neutral atoms, laser cooling and trapping techniques are used. Single
atoms have very little mass so an atom in equilibrium with a room temperature bath
has a thermal speed %mzﬂ = %kBT , where v is the atom velocity, m is the atomic mass,
T the temperature, and kg the Boltzmann constant. For typically used atomic species,
we obtain v = 240m/s. In order to trap such high-speed atoms, the adopted solution is
the following;:

e The atoms are first laser cooled to uK temperatures. Laser cooling relies on photon
momentum to reduce the kinetic energy of atoms. Assuming a two level system
and a photon with momentum p, = Ak with A the reduced Planck’s constant and &
the photon’s propagation axis, after a cycle of photon absorption and spontaneous
emission, an atom with initial velocity v; reaches a velocity vy given by mv; =
mv; + h(k — kg) where kg, denotes the direction of the spontaneously emitted
photon. Since the direction of kg, is randomly distributed, in the laser beam
propagation axis its impact can be neglected over many realizations. Therefore,
a single laser beam will push the atoms along its propagation axis. In order to
cool the atoms and reach a steady state, we apply a pair of counter-propagating
beams, and set the frequency of the laser to be out of resonance from the atomic
transition by a quantity A < 0. If the atoms are propagating towards beam A,
thanks to the Doppler effect, A increases for this beam (an decreases for beam B)
and thus the beam pushes the atom in the other direction with a strength larger
than beam B. The equilibrium atomic temperature depends on A and can be
shown to be kgTp = hvy/2 for A = —~/2, where v is the transition linewidth.
This technique is applied in the three directions of space (6 laser beams in total),
and allows to reach temperature in the hundred pK range.

e Atoms are then individually trapped using laser light which is strongly focused
onto the atoms (typically a volume of 1 um?), also called optical tweezers due to
their ability to "catch” single atoms. The laser is usually largely detuned from
the atomic resonance, such that the absorption rate of the light is in the range of
one photon per second (this will be further discussed in Section 2). Such detuned
light therefore mainly acts as a potential well for the atom, hence being a trap.
The volume of this trap is so small that two atoms cannot be at the same time in
the trap (due to light-assisted collisions between the atoms). The typical depth of
such tweezers is ~ 1 mK, which is enough to trap atoms that have a temperature
of ~ 100 uK.

Exercise 1. Compute the speed of a Cesium 133 atom in a 300K environment. Con-
sidering using a laser tuned to be on resonance with the D, line, compute the typical
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Figure 1: Quadrupole trap geometry

number of emission-absorption cycles this atom must undergo to reach a temperature of
100 K. Assuming that Cesium atoms travel along a well defined direction, compute the
typical distance which is required to cool and trap a Cesium atom. Deduce the typical
size of a vacuum system used in a neutral atom quantum computer.

A challenge for the neutral atom platform is the fact that the trap depth is less than
the energy of untrapped background atoms and molecules (1 mK trap depth against
particles at 300 K). Collisions with hot, untrapped particles remove trapped atoms.
At atmospheric pressure, the collision rate would be so high that atoms would remain
trapped for durations well below 1 ns, which is way too small for performing computa-
tion. We thus put the atoms into a vaccuum chamber, with a typical vacuum of ~ 10714
bar. In such apparatuses, the typical collision rate is of the order of one event every 100
seconds.

1.2 Trapping ions using Paul traps

Although optical traps are possible for ions, by far the most widely used approach is
an electromagnetic trap based on radio and microwave frequency fields. Consider a
positively charged ion. We would like to design a trapping potential that stably confines
the ion at a fixed position in space. Let ¢(r) be a static trapping potential so the energy
of the ion is U(r) = qp(r) with ¢ the charge. The local electric field is E = —V, and
in free space V- E = —V2p = 0. In order to have a stable trap we require that ¢ has
a local maximum or minimum which implies that £ = —V¢ must be either negative or
positive along all lines originating at the extremum. This is not possible since V- E =0
so there can be no local maximum or minimum of ¢, only a saddle point. A saddle point
can be generated in a quadrupole configuration (Figure 1) performed in the following
way:

e Along the z direction of space one dimensional electrodes are placed at a distance
2. from the trap center. The potnetial of these electrodes is set to be —V//2

e Along the x and y directions of space, an electrode with a circular shape is placed,
at a distance 7. from the trap center, and with a potential +V/2.



Choosing 7. = v/2z., the obtained potential is

Ulz,y,z) = Z—Zg(ﬁ +y* — 227) (1)

For V' > 0 the potential has a quadratic maximum at z = 0 and minimum at z =y = 0.

Designed that way, the trap is metastable. To achieve stability it is necessary to

add additional fields. The Paul trap provides a solution that confines the ions to well

defined spatial positions. To do so we apply a potential V' (t) = V; cos(wyt) with typical

values wy¢ ~ 10 — 100 MHz. The potential changes sign at frequency w,s which stabilizes
the ion. The ion’s motion along the z direction is given by:

d*z .

o 24, cos(27)z (2)
with 7 = wyt/2 a dimensionless time and ¢, = 2¢Vy/(mz?w?%) and m is the mass. A
similar equation describes the x and y motions with ¢, = ¢, = —¢./2. Due to the

oscillating electric field, the ion’s position also oscillates. Critically, this oscillation is
centered at the center of the Paul trap: the ion is stably trapped into a defined region
of space. This is a Mathieu equation and it can be shown that the motion is bounded
for particular value ranges of ¢.. The primary stability region is 0 < ¢, < 0.908 which
corresponds to wy > 1.48(qVy/(mz?)'/2. This stability condition can be understood
qualitatively from the requirement that the potential change sign before the accelerated
ion reaches an electrode.

Exercise 2. Assuming a Be™ ion in a Paul trap as described above with V5 = 100 V
and z. = 1 mm, compute the minimal value of w,; which satisfies the condition on the
stability region described above.

Of particular importance is the fact that the effective potential is very deep (in the
range ~ 1000—10000K). If the ion were to move a tenth of the distance to the z electrode
or z/10 the corresponding potential depth would be ~ 1000 K which is significantly
larger than the energy of untrapped atoms or molecules in a room temperature vacuum
apparatus. This implies that ions in a Paul trap are stable in the presence of background
collisions. However, chemical reactions with untrapped particles can happen which lead
to ion losses. For this reason, the ions are placed in a vaccuum chamber, with residual
pressures similar to the one described in the neutral atom platform. In such environment,
it has been demonstrated that ions lifetime can reach typically one month.

In this section we described the trapping of a single ion. The actual electrode ge-
ometry that is used in practice for ion traps is quite different than discussed in order to
scale to many ions, but the principles remain the same.

The overall scheme to trap ions is the following: a vapor of the desired atomic species
is placed inside a vacuum chamber. At the position of the Paul trap, lasers are used
to ionize the atom to create the desired ion. Once this process is performed, the ion is
sensitive to the Paul trap and gets trapped. Laser cooling techniques are then used on
the ion in order to reduce its temperature in the Paul trap and pin it at its bottom.



1.3 Electronic qubit and center of mass motion

Following what we’ve discussed, the overall architecture of an atomic qubit quantum
computer contains three main parts: (1) a vacuum chamber in which the atoms are
confined, (2) lasers which manipulate the atoms, and (3) electronics which control the
lasers.

We saw that in both platforms, the atomic qubit is trapped. In practice, it is the
center of mass of the atom which is trapped, while the qubit deals with the electrons
that gravitate around the center of mass of the atom. Therefore, both the qubit and
the center of mass should be considered when performing quantum computations, when
necessary. In the following, we will consider a qubit encoded in electronic states |0), |1),
and a thermal state for the center of mass atomic motion. We will assume the traps to be
harmonic oscillators (here one dimensional to simplify), meaning that the energy levels
of the center of mass are given by E(n) = hw(1/2+n), with w the vibrational frequency.
We will also assume that the dynamics of the center of mass within the trap follows a
Maxwell Boltzmann thermal distribution, where the probability of occupation of level
nis P, = aexp(—U(n)/kgT) , with a a normalization constant. The temperature can
be expressed as kT = hwln(1+1/n). For a qubit with state [¢), the complete density
operator describing the atomic state is thus

p(W) =) (| @Y Puln) (n], (3)

where the tensorial product allows for the distinction between the electronic states and
the motional states of the center of mass.

Even though the description of the qubit is the same between the two platforms,
there is an important difference between them: the typical reachable trap depth. For
the neutral atom platform, the typical trap depth is 1 mK, with trapping frequencies
in the range of ~ 100kHz. For trapped ions, the trap depth is ~ 1000 K, and the
typical trapping frequencies are in the MHz range. This difference induces that the task
of cooling the center of mass in the trap is much simpler to perform in ion traps than
in neutral atoms, usually leading to higher fidelities in the various quantum processes
which are applied.

This subtle consideration between the electronic qubit and the trapped center of
mass will play an important role in the next sections, both to compute the leading
decoherence term in the neutral atom platform (Section 2.2.1), and to engineer two
qubit gates in the ion platform (Section 4.2).

1.4 Choice of the atomic species

In both platforms, the ability to laser cool the atomic qubit is paramount. Quantum
computers based on atomic qubits are therefore limited to the atoms that can be effi-
ciently laser-cooled. Such atoms are usually alkali-like atoms, which only have one or
two valence electrons and therefore the underlying energy levels are simple to manipu-
late. This means that for neutral atoms, alkali atoms are mostly used, at the exception
of Ytterbium Yb : [Xe]4f46s? which has 2 valence electrons (hence harder control) but
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Figure 2: Shaded elements have been laser cooled and in many cases trapped in either
neutral or singly ionized form. Highlighted are the leading species for neutral atom (Rb,
Cs and Yb) and ions (Yb™).

exhibits interesting properties for quantum error correction. For ions, the most com-
monly used species are alkaline-earth atoms with a single electron default, meaning that
here also there is a single valence electron (Yb™ : [Xe]4 f146s!).

A second important aspect is that the atom should be as localized as possible at
the bottom of the trap in order to ease its control. For a given atom temperature, the
atom’s position depends on the mass of the atom: the higher it is, the more localized
the atom is. This means that heavy atoms are preferred. For neutral atoms, the most
common choice of atomic species are Rubidium, Cesium (heaviest alkali atoms which
are stable) and Ytterbium. For trapped ions, the heaviest stable alkaline-like ion is
Yb", and is thus the common choice. In the next sections, we will discuss the case of
a single valence electron (thus consider Rubidium, Cesium and Yb™). All the reasoning
would also apply to more complex electronic structures.

2 Qubit states and qubit quality

Once atoms are individually trapped, the next requirement is the ability to convert these
atoms into qubits and manipulate them. As previously mentioned, the aim is to target
for a qubit which has high 77 and T, times. To this end, the chosen states must have
long lifetime, and it is therefore natural to choose the electronic ground states as a qubit
basis, as their lifetime is 74 ~ 10'® s. Thanks to the spin interaction between the atom’s
core and the valence electron, there are in most cases more than one state within the
ground state manifold (for atomic species which have a non-zero nuclear spin). A subset
of these ground states are then used as a qubit (see Figure 3 for Cesium). Due to the
small value of the nuclear magneton these qubits have only small energy separations in
modest magnetic fields. The typical energy splitting is in the range of ~ 27 x5—10 GHz:

e For Rubidium, wyg ~ 27 x 6.8 GHz
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Figure 3: Structure of low lying energy levels of Cs (representative of the states for
Rb, Cs and YbT). Cs hyperfine qubits are encoded in Zeeman sublevels of f, = 4 and
f_ = 3. Optical transitions to the lowest lying excited states are used for cooling and
state preparation.

e For Cesium, wyg ~ 27 x 9.2 GHz
e For Yb™, wip ~ 27 x 12.2 GHz

The transition frequency between the two states is thus (1) low enough such that it
can be performed by applying a microwave field using extremely well controlled radio-
frequency generators, and (2) large enough such that the Rotating Wave Approximation
can be applied (for the typical gate speeds that are currently used). We will see in the
next section that these extremely nice properties enable high single-qubit gate fidelities.

2.1 Qubit lifetime T}

We now study the typical T} time that is obtained using atomic qubits. As a reminder,
the T} quantifies the typical states lifetime of |0) and |1). Even though it is in theory
possible that both states do not have the same lifetime, in practice for the atomic qubit
platforms it is the case. The theoretical lifetime of the |0) and |1) states is T4 ~ 10'°,
and thus one could expect T1 ~ 7z ~ 10'°. However in practice, the obtained value
of T} is lower, because these atoms are coupled to their environment, We consider two
factors common to ions and neutral atoms that induce a reduction of 1;:

e Due to black-body radiations, the atomic qubits can absorb electromagnetic waves
emitted from the environment and therefore undergo unwanted transitions. How-
ever, the coupling between the qubit states being very weak, the expected reduced
Ty from this effect is TPBR ~ 10712 5. This shows that a cryogenic environment
is not necessary for atomic qubits, in contrast to superconducting circuits which
will be studied in Lecture 3.



e Even though the atomic qubits are placed in a vacuum chamber, there is a certain
probability that a trapped atomic qubit collides with background residual gas. The
magnitude of this factor depends on the quality of the vacuum, and is generally
in the 100 s regime.

Exercise 3. Considering rubidium 87, derive the impact of black-body radiation given
above (TEBR ~ 10712 s) at 300K using the thermal photon occupation formula of a 300K
environment.

Considering these two mechanisms, the obtained 7} time can reach hours, making it
the highest value among all quantum computing platforms.

However in the case of the neutral atoms, the 7} time is much lower, as a third
mechanism contributes to reducing the 7} time. As the atoms are trapped in optical
tweezers, there is a finite probability for the atom to absorb the light from the tweezers,
a phenomenon known as Raman scattering. This scattering depends on the atomic
species. For alkali atoms, the Raman scattering rate ' is given by:
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where Apg and I' are respectively the fine-structure splitting and linewidth of the first
excited state, A is the detuning from the fine-structure center, and U the tweezers trap
depth. This formula shows that, for a fixed atomic species, this phenomenon depends
on: (1) the wavelength of the light (via A and U), and (2) the laser intensity (via U).
In practice, the tweezers depth U is fixed (as a certain depth is required to efficiently
trap and keep the atoms in the tweezers), and therefore the only free parameter is the
trapping laser wavelength. Thankfully, U oc 1/A whereas I'p oc 1/A?, meaning that '
can be arbitrarily decreased while keeping a trap depth of 1 mK. In typical nowadays
quantum computer, the Raman scattering is in the range of seconds, and up to hundred
seconds has been demonstrated.

Exercise 4. Considering rubidium 87, compute the Raman scattering rate for light at
820 nm and assuming a trap depth of 1 mK. Also compute the laser power required to
trap an atom, assuming that the optical tweezers has a Gaussian profile with a radius
waist of 1 um. Perform the same computations (Raman scattering rate and required
laser power) now assuming a wavelength of 850nm. What conclusion do you reach from
these calculations? Can you provide an advice on the tweezers wavelength one should
use to build a neutral atom quantum computer?

As a conclusion, the typical T} of nowadays neutral atom quantum computer is in the
range T} ~ 1 s, mainly limited by Raman scattering from the optical tweezers whereas
the typical T} time obtained in trapped ions is 77 ~ 10? s, the difference coming from
the underlying method used to trap the atomic qubit.

2.2 Qubit coherence time 75

We now study the typical T5 time that is obtained using atomic qubits. As a reminder
of Lecture 1, the T5 time quantifies the quality of a qubit to remain in a superposition
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state of |0) and |1). Its measurement is usually performed via Ramsey interferometry,
which has been studied in Lecture 1. As a reminder: starting from |0), a first rotation
around the y axis R,(7/2) = e"™/% is performed, which prepares the state |+) =
(10) 4+ [1))/v/2. The system then evolves for a duration ¢ under the operator U(t) =
R.(0t) = e~/ 22 , with ¢ the detuning between the driving field frequency, and the qubit
transition frequency (assuming the rotating wave approximation), leading to the state
(]0) +e~® 1)) /+/2. A last R,(w/2) is performed before measuring the populations in |0)
and |1). The complete unitary Ug which is performed is Ug(t) = R,(7/2)U(t)R,(7/2),
and the outcome of this experiment is Py(t) = sin(dt/2)%.

The T5 time is the typical duration after which the overlap of the evolved wavefunc-
tion |¢(T")) onto |+) is below 1/e. We note that the definition of T3 can slightly vary
depending on the underlying decoherence mechanisms and quantum computing plat-
forms (as seen in Lecture 1, the overlap decay is not always exponential).

Several factors contribute to the value of T5. First, the T5 time is directly dependent
on the T} time as discussed in Lecture 1, as for example an event of spontaneous emission
from |0) or |1) would collapse the wavefunction, and lead to T, = 27). The T3 time
is also impacted by decoherence mechanisms that suppresses the coherence between |0)
and |1), which in the density matrix formalism correspond to the terms py; and p1p. Such
coherence terms are decreased when submitted to decoherence mechanisms, leading to
non-pure state.

However in practice, the coherence terms are mostly impacted by unwanted phases
added between the |0) and |1) states. This modifies the state and therefore reduces the
T time, but do not lead to decoherence in its mathematical definition (the state after
unwanted phases variations is still a pure state). However, if the quantum computer is
not aware of this (coherent) change of state, then it isn’t possible to backtrack the orig-
inal state, and therefore the system behaves as if it was incoherent. In practice, such
”coherent” errors are largely predominant, and usually arise from fluctuations in the
energy difference between the two levels of the qubit. In the Ramsey sequence described
above, it means that ¢ follows a certain (random) distribution, and the obtained P is
then a damped sine (see Lecture 1) with an associated T5 value.

For both platforms, a main factor that contributes to 75 is static electric and mag-
netic field fluctuations. The electron in its ground state is largely insensitive to electric
field fluctuations. We stress that it is also the case for ions: even though the center of
mass of the ion is extremely sensitive to electric field (hence the trapping), the electron
that gravitates around the center of mass is not, as the energy levels in the ground
states are mainly coming from the spin interaction between the electron and the center
of mass.

To prevent the impact of magnetic field fluctuations, the energy levels that are used
for the qubit are chosen to be insensitive to magnetic field at first order. Considering
these, the typical T3 time that is achieved on the ion platform is 75 ~ 1 — 10s. We will
see next that it is not the case at all for neutral atoms, as another important decoherence
term appears due to the trapping potential.
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Figure 4: An electronic qubit encoded in hyperfine ground states |0) and |1) of an
atom with an electronically excited state |e). The qubit has a GHz scale frequency w,
and is confined in a harmonic trap with vibrational levels n separated by w,. Coupling
between the spin and center of mass degrees of freedom results in a small spin dependent
differential shift (DS) of the vibrational energies.

Exercise 5. Considering rubidium 87, compute the energy shift that is applied to the
ground states due to a static electric field of 1 V/cm (compare with the situation of 0
electric field). Perform the same for a magnetic field of 1 Gauss. Out of the 8 ground
states of Rubidium, find the best qubit based on these calculations.

2.2.1 Motional decoherence in neutral atoms

The variations in the energy levels due to the trapping potential have two origins: (1)
fluctuations of the laser power itself, and (2) variations induced by the movement of
the center of mass in the trap (also known as motional dephasing). As the center of
mass oscillates in the trap, the light intensity that the atom feels varies in time. This
varying light intensity induces variations in the energy of the atom’s levels. As the two
levels of the qubit do not experience the same light shift induced by the tweezers, this
effect leads to decoherence. Motional decoherence provides an instructive example of
undesired entanglement between the qubit and other dynamical variables, which here
results in reducing the coherence time (Figure 4).

As previously discussed the T, time can be measured with Ramsey spectroscopy,
which involves the sequence U = R, (7/2)U,,(t)R,(7/2). As we now consider the impact
of the center of mass movement which changes the electron’s energy levels, the free
evolution operator for a time ¢ is now given by

Un(t) = e—i(Am(n)—é)Zt/Q' (5)

Here § = w — wyy is the detuning of the field driving from the qubit frequency wyo (same
as above), A, (n) = $[E1(n) — Eg(n)] = (1/2 +n)(w; — wy) is the differential light shift
between the two qubit states, and w; are the trap frequencies when the atom is in the
electronic state |j). We will assume R only acts on the electronic state and does not
change |n).

The trap frequencies depend on the electronic state due to the fractional differential
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light shift Frg = (Ey — EO)/%(EO + Ey). The energy difference AE = E; — Fy scales as

_ A A )

AE ~ FE — ~ =2 6
(A—wq/Z A—l—wq/Q) A (6)

with E the average trap potential and A the detuning of the trap light from the excited
state. Using a trap depth E = kg x 1 mK , w, ~ 2m x 10 GHz and A ~ 27 x 10 THz,
we obtain AE ~ h x 20kHz.

With the assumption of Apg < 1, which is generally the case, we can write w; ~
wo(l + Ars/2) so Ai(n) = (1/2 + n)woyArs/2. The density matrix after a Ramsey
sequence is therefore:

p(t) = Up(O)U" = R joUn(t) Reyo <|o> 0@y Puln) <n|> R, U.('RL,  (7)

The probability of measuring the atom in |1) after time ¢ is Py(t) = Tryn((1| p|1)) =
>, Pul (1) Ry j2Uy (t) Ry j2 10) |?, where Tryy, denotes the trace over the motional states
(as the detection is not sensitive to the ionic core motion). Evaluating the operator

product we find
1 1
Py(t) =35 +5 > " P cos(6,t) (8)

with 6, = %nwo — 6. When the atom is in the motional ground state F; = 1 and
Py(t) = (1 + cos(dt)). We here recover the results of the usual Ramsey experiment.
For thermal states with many occupied vibrational modes evaluation of the above
sum is inefficient. In this limit we can let i/T — 0, use P, ~ w,w,w.B%e ™0 and
approximate the sum by an integral. This semiclassical approximation leads to

1 1
Puy(t) = 5
1y (t) 5T 2[1 4 0.948(t /T )23/

cos(6t — k) 9)

with Ty = Ve?/3 — 1&. For typical parameters T' = 10 uK and Apg = 27 x 20 kHz,
one obtain 75 ~ 1 ms. This means that the coherence time is strongly limited by this

effect.
Exercise 6. Find the expression of k.

From this result, we can make a few key observations:

e As discussed in Lecture 1, not all types of noises lead to an exponential decay of
Ramsey fringes contrast. Motional decoherence as detailed above is one of them.

e The coherence time T5 is directly linked to the the introduced effective coherence
time T5. Its value depends on the atom temperature (for zero-temperature no
decay is expected), as well as the fractional differential light shift. In the limit of
an infinitely detuned trapping light, the |0) and |1) states would feel the exact same
light-shift, and therefore 75 — oco. Another solution to cancel this decoherence
mechanism is to have the same trapping potential for both states of the qubit. This
situation is called magic trapping, and is widely used in atomic clock experiments.
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Figure 5: Experimentally measured 77 ~ 4 s and 75 ~ 1.5 s (with dynamical decoupling)
on the neutral atom platform.

This motional decoherence error is inherently coherent, and the decoherence arises
from the fact that the motional states are randomly populated. As previously discussed,
if we were able to track the motional states of the atom’s center of mass, we could be
able to compensate this effect.

2.2.2 Canceling motional dephasing through dynamical decoupling

Another solution cancels motional dephasing: the use of dynamical decoupling methods.
As discussed in the Lecture 1, the simplest one is the spin-echo (or Hahn) sequence.
Starting from |0), it consists in applying between the two m/2-pulses of the Ramsey
sequence a m-pulse that flips the qubit states |0) and |1). half of the sequence, after the
m-pulse, leads to a rephasing of the dynamics. The implemented unitary is the following;:

Uss = R, (x/2U(0)R, (U (1) R, (7/2) (10)

where for the sake of simplicity, we will here consider the simple case U(t) = R,(dt).
One can show that in this situation, Py = 1, whatever the values of § and ¢t. Such
dynamical decoupling cancels motional dephasing, but also any ”coherent” noise which
does not vary between the beginning and the end of the sequence: assuming the evolu-
tion R,(7/2)U(t)R,(m)U’(t)R,(7/2), the echo method works if U(t) = U’(t).

Exercise 7. Demonstrate that Py = 1 in the echo sequence described above.
Using such methods, the 75 time can be extended to values as high as ~ 1s. For

such duration, the T} becomes the main contributor. As the 77 time is dominated by
an incoherent process (spontaneous emission), it cannot be dynamically decoupled.

2.3 Comparison between neutral atoms and ions

In this section, we have analyzed the leading mechanisms that explain the obtained T}
and T5 times. Typical values are reported in Flgure 5. We have observed that trapped
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ions outperform neutral atoms on this two values, in particular due to the trapping
method which is employed: as the Paul trap does not directly act on the electron’s
energy levels in order to trap the atom’s center of mass, its impact on the qubit is
negligible. This is in contrast with optical tweezers traps which directly use the valence
electron in order to trap the center of mass.

From this, the conclusion could be that trapped ions are better than neutral atoms.
However, an important key parameter here is the scalability of the platforms: realizing
in practice arrays of Paul traps is a large technical challenge, whereas creating arrays of
optical tweezers is a relatively simple task. We therefore have a trade-off between qubit
number and qubit quality between the two platforms.

2.4 Qubit detection

We briefly mention how atomic qubits are detected. For both platforms, the adopted
solution is to perform fluorescence imaging by shining resonant light which targets only
one state of the qubit. The spontaneously emitted light by the atomic qubits is collected
using a camera. Assuming that it is the |1) state that is targeted by the light, atomic
qubits that emitted light are inferred to be in the |1) state, while atomic qubits that do
not emit light are inferred to be in the |0) state.

3 Single qubit gates

For both platforms, single-qubit gates are implemented via microwave or optical fre-
quency fields through Raman transitions. The gates are implemented via Rabi drive.
The Hamiltonian that describes resonant Rabi driving is:

H= ?(cos(gb)X +sin(¢)Y), (11)

where (2 is the Rabi frequency and ¢ the driving phase. In particular, R,(6) or R,(f)
rotations can be engineered with the correct value of ¢. The rotation angle is = ()
with ¢ the gate time. Rotations about other axes in the equatorial plane can be obtained
with an appropriate choice of ¢. Phase gates are implemented by changing ¢. As any
angles 6 and ¢ are accessible, it means that any single qubit rotation can be performed.
These consideration highlight the importance of having a good control over the driving
phase.

Exercise 8. Show on a Ramsey experiment that changing the phase of the second
pulse by a quantity ¢ is equivalent to applying R,(¢) during the Ramsey experiment.

Gates acting on qubits encoded in hyperfine states can be simply implemented us-
ing microwave fields that are resonant with the qubit frequency. When the hyperfine
states are connected with the same electronic orbital the transition is of magnetic dipole
character and the Rabi frequency is 2 = puB/h where pp is the matrix element of the
magnetic moment operator and B is the amplitude of the magnetic field. For radiation
of intensity I the field amplitude is B = £/c = /21 /(eyc?), where £ is the electric
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field amplitude. Typical Rabi frequencies for a few watt of microwave power driving a
hyperfine transition in an alkali atoms are ~ 10kHz.

All qubits in an array can be rotated in parallel by turning on a resonant microwave
field. Since the microwave wavelength is much longer than a typical atomic array size
all qubits are addressed. Site selective addressing can be achieved with a combination
of microwaves and a focused optical beam that Stark shifts selected sites. Site specific
x or y rotations are then obtained using the identity:

Ry(0) = Ry(7/2)R.(0) R, (—7/2) (12)

Here R, and R, are global rotations which cancel at those sites that do not receive the
local R, rotation.

Exercise 9. Show how to implement a local R,(6) rotation using global R, rotations
and local R, rotations.

Even though microwaves are the simplest solution, they lack two features:

e Their low Rabi frequency (in the 10 kHz range) means that gate operations are
slow (typically 100 us), meaning that the quantum computer will be slow.

e The lack of direct qubit adressability induces a loss of fidelity in the operations,
and increases the complexity of computations.

Faster Rabi frequencies can be achieved using optical transitions, using a two-photon
stimulated Raman transition via an excited state. In general the selected excited state is
the first excited state (5P, for Rubidium). This involves a light field consisting of two
optical frequencies with the difference equal to the qubit frequency. If the one-photon
Rabi frequencies are €21, {25 with respect to an intermediate state that is detuned by
A then the two-photon Rabi frequency is ©;5/(2A). With the optical Raman ap-
proach Rabi rates of several MHz can be readily achieved, meaning that gate execution
is performed in duration below 1 us. There is a decoherence cost associated with this
approach since photons are scattered from the intermediate level. It can be shown that
the probability of photon scattering during a 7 pulse is Picas ~ 7/|A| where 7 is the
radiative decay rate of the intermediate state.

Exercise 10. Assuming that €, = ()5, demonstrate the formula giving the amount of
scattering during a 7w pulse.

The typical single-qubit gates fidelities on current neutral atom platforms is Fjg =~
99.99%, and reaches Fig ~ 99.999% in trapped ions. These values are mainly limited
by scattering, as well as power and frequency fluctuations in the drive which lead to
coherent errors (the performed gate is not exactly the intended one).

Exercise 11. Assuming Rubidium 87, compute the typical one-photon Rabi frequency

using a laser on resonance on the D line (795 nm) using a laser with a power of 1 mW
with a Gaussian profile and a radius waist of 100 pum. Assuming a second laser identical
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to the first one and set to perform the Raman transition, and a measured 77 = 10 ms
for both qubit states, what is the optimal value of A which maximizes the single qubit
gate fidelity, and what is the expected fidelity?

4 Two-qubit gates

Interactions between qubits are needed to implement two-qubit gates. In both ions
and neutral atoms, the chosen states for the qubit encoding interact very weakly with
their environment (hence having high 7} and 75 times), and hence with nearby atomic
qubits. The two platforms uses very different methods in order to engineer interactions:
neutral atoms use the natural dipole-dipole interaction between atoms to engineer two
qubit gates, whereas tapped ions uses the motion of the center of mass. We successively
describe these two.

4.1 Engineering two qubit gates with neutral atoms
4.1.1 Dipole-dipole interaction and Rydberg states

We use the dipole-dipole interaction between atoms to engineer two qubit gates. Con-
sidering two dipoles separated by a distance r, the general formula of the dipole-dipole
interaction is given by:

1 dy-dy—3(dy - 7)(dy - 7)

4reg r3

(13)

where d; and d, are the dipole moments of the two considered dipoles. The dipole dipole
interaction typically scales as Vyg ~ d?/r3. Here, d is linked to the size of the dipole,
and for atoms the dipole size is typically given by the spatial extent of the electron’s
wavefunction d ~ agn? where aq is the Bohr radius and n the principal quantum number.

As electronic levels have a definite parity, they do not exhibit a permanent dipole
moment ((d) = 0). Therefore, the dipole-dipole interaction between two qubits in the
state |0) ® |0) = |00) is zero:

(00| Vza [00) = 0 (14)

However, the dipole-dipole interaction is non zero between opposite parity states. Con-
sidering an energy level |ab) with opposite parity as |00), then (ab| V4, ]00) # 0. This
coupling to nearby states induces an energy shift V%9, of the |00) state. Its value can
be obtained via second order perturbation theory:

a;b;| Vaq |00) |2

VOO — | < 17 15

Vaw Zb; Bt — Eoo (15)
a’”L7 1

where the sum runs over all existing states a;, b; with energy £, ;,, and Ey is the en-

ergy of the |00) state. In general considering two atoms, this energy shift scales as

Vvaw ~ VZJA ~ d*/(Ar®), where here A is the typical energy difference between
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states. We observe that this energy shift takes the form of a Van der Waals interaction:
VVdW ~ 06/7“6, with CG ~ d4/A

We can now compute the typical energy shift between two atoms in their ground
state at a distance r = 5 um, a typical distance between two optical tweezers. In this
situation, Cg/h ~ 107" Hz.um~6, and thus Vigw /h ~ 27 x 107'" Hz. This means that
the interaction is fully negligible on atoms that are in their ground state.

In order to enhance this interaction, atoms are excited to energy levels with a high
principal quantum number n. The scaling of the van der Waals interaction with n is
Uyaw x n'l. Now assuming n = 75, we obtain Cg/h ~ 10° GHz.um", and Uyqw/h ~ 64
MHz. The interaction is now many orders of magnitudes stronger.

Exercise 12. Assuming an energy level repartition following the hydrogen structure,

find the scaling Uygqw o< n'l.

In practice, only the [1) state is connected to |r), usually using a Raman transition
with a Rabi frequency €2,.. We are here defining a novel qubit in our system, which is
constituted of the states [1) and |r). Assuming a single atom, the Hamiltonian H
that governs the dynamics of the system is exactly the same as for single qubit gates
(simple Rabi driving):

Hlyg = 7 (cos(60)X +sin(0,)Y), (16)

with ¢, the phase of the drive.
Now considering the case where two atoms are separated by » = 5 um, the relevant
Hamiltonian which acts on both atoms is:

2,0 = "5 (cos(6,) X1+ sin(0,)¥3) + 57 (cos(6,)Xs + sin(0,)¥2) + 2 ) (rr] (17

where X; and Y; are the usual X and Y operators acting on atom i. We here find the
van der Waals interaction term, which shifts in energy the |rr) level by a quantity %

In typical neutral atom quantum computer, €2, ~ 27 x 5 MHz, and Uyqw/h ~ 100
MHz. We are thus in a regime for which Q,/(27) < Uvaw/h. In practice, this means
that |rr) is so much shifted in energy by the Van der Waals interaction that the system
cannot couple to this state, a phenomenon known as Rydberg blockade, which means
that only one of the atom can go in the |r) state. However, as this process happens
in an indistinguishable fashion between the two atoms, both atoms reach the Rydberg
state, and the system thus couples to the state entangled state |W) = (|1r) + |r1))/v/2:
the Rydberg blockade mechanism leads to entanglement generation. Importantly, the
coupling strength to this state is different than in the single atom case: the coupling
strength between |00) and |[W) is v/29,, whereas it is €, between |0) and |1). This
difference in coupling strength is the main feature which enables the implementation of
two-qubit gates.
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Figure 6: Levine-Pichler (LP) gate protocol. a) Pulse sequence. b) Output states of the
gate protocol. c¢) Bloch sphere representation of the system evolution in the situation
|01) and |10). The dynamics of the |01) and |11) states can be understood in terms of
two-level systems with the same detuning A but different effective Rabi frequencies. The
pulse length 7 is chosen such that the |11) system undergoes a complete detuned Rabi
cycle during the first pulse, while the |01) system undergoes an incomplete oscillation.
The laser phase £ is chosen such that the second pulse drives around a different axis
to close the trajectory for the |01) system, while driving a second complete cycle for
the |11) system. d) The dynamical phases ¢¢; and ¢, are determined by the shaded
area enclosed by the Bloch sphere trajectory and vary from 27 to 0 as a function of A,
corresponding to increasingly shallow trajectories. Insets show family of trajectories for
different detunings. Choosing A ~ 0.377€) realizes the CZ gate.

Exercise 13. Demonstrate that in the regime Q,/(27) < Uyqw/h, the two atom
Hamiltonian applied to [00) has a coupling strength of v/2€2, to the |WW) state.

4.1.2 Two qubit gate engineering via the Levine-Pichler protocol

We implement a CZ gate using the Rydberg blockade mechanism via the Levine-Pichler
gate protocol (Figure 6). We remind the expression of this gate:

100 0
010 0

UCZ_0010 (18)
000 —1

The gate protocol is as follows:
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e A first pulse coupling |1) to |r) of duration 7, with a detuning A from the transi-
tion, is applied

e A phase change in the driving field of value £ is applied to the driving field
e A second pulse, identical to the first one, is applied.

We call the unitary applied by this protocol . Each pulse changes the state of the atoms
according to the unitary U(7) = e "7, As previously discussed, the phase change can
be seen as a rotation R,(£). Therefore, Y = U(7)R.(¢)U(7). The evolutions are here
performed with a detuning from the transition. Form the generalized Rabi formula, one
gets the effective Rabi frequency: Qo = vQ2 4+ A? (in the case where A = 0, we recover
the usual Rabi frequency §2).

In order to show that this protocol implements a gate close to a CZ gate, we will
check the output state of the gate protocol considering the 4 input states: |00), |01),
|10) and |11).

Input state |00): The state is not connected to the Rydberg states, and therefore
nothing happens. The output state is |00), as expected for the CZ gate.

Input state |[11): We choose the length of each pulse 7 such that a system prepared
in |11) undergoes a complete, detuned Rabi oscillation and returns to the state |11)
already after the first single pulse. This means that:

T =21 Qeg = 210 /\) A2 4 (V202)? (19)

As we are in the blockaded regime, the driving strength is given by v/2Q. This means
that after one pulse, the system is in the state U |11) = e=*17|11) = e2mA/VAT22% 1),
The phase change R,(¢) does not impact the system, as |00) is in an eigenstate of R, (¢),
and therefore there isn’t any dynamical phase accumulation. The second pulse also leads
to a complete, detuned Rabi cycle about a different axis (due to the change in phase),
but results in the same accumulated phase. At the end of the gate protocol, the total
evolution leads to U |11) = €2 |11) with

do = 21 X 2A/V/AZ 1 202 (20)

Input states |10) and |01): Since one of the atoms is in |0), the Rydberg blockade
phenomenon does not take place, and the system evolves following Hrlyd (with the addi-
tion of a detuning term). The dynamics is thus the same for [10) and |01), and we thus
treat them together and only consider |01) in the following. Due to the mismatch be-
tween the effective Rabi frequencies between the blockaded regime and the single atom
regime, the |10) state does not return to itself after the time |7) but a superposition
state is created: U [10) = cos(a) [10) + sin(B3)e? |r0). «, B and 7 are determined by the
choice of 2, A and 7. Crucially, by a proper choice of ¢ one can always guarantee that
the system returns to the state |01) after the second pulse. With this choice of the phase
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we thus have U |10) = e~%1|10).The acquired dynamical phase is a function of A/Q, 7w
and £. Since we fixed 7 in equation (19), and & such that U |10) = e~ [10), ¢, is solely
determined by the dimensionless quantity A/€. Note that also ¢, is only a function of
A/Q. However, the functional dependence is different, and by setting A/Q ~ 0.377, we
obtain e%2 = ¢i(2¢1+7)

By performing this protocol, we obtain:

1 0 0 0
0 €91 0 0
0 0 ¢ 0
0 0 0 e'201+m)

U = (21)

which is not equal to Ugz. By applying an additional phase gate R,(—¢;), one obtains
Ucy.

The exact protocol which is currently used on neutral atom quantum computer is
slightly different than this one, but relies on the exact same underlying ideas. Using
such protocol, CZ gates fidelities Foy > 99.5% has been demonstrated. The fidelity is
impacted by various factors:

e Contrarily to ground states, the Rydberg states have a relatively short lifetime,
typically ~ 100 us. For a typical gate duration 27 ~ 400 ns, we obtain a fidelity
Foz ~ 99.6% due to the Rydberg state lifetime.

e Rydberg states are very sensitive to their environment: any magnetic field or
electric field fluctuation will impact their energy level, which will cause variations
in A. This will both impact the accumulated phase (inducing that the performed
operation is not a CZ gate), and the ability for the pulses to bring the system back
into the ground state qubit basis (a part of the wavefunction will remain in the
Rydberg states).

e The ground-Rydberg transition frequency is ~ 1000 THz, meaning that highly
energetic lasers are required to perform the CZ gates. In practice, any intensity
or frequency noise on these lasers will impact the gate fidelity.

4.2 Engineering two qubit gates with ions

Two-qubit gates with ions are qualitatively different than with neutral atoms. Here, the
underlying mechanism enabling the generation of entanglement is the manipulation of
the center of mass motion. Due to the large oscillation frequencies in trapped ions (a
few MHz), it is possible to control the coupling between the qubit degrees of freedom
and the center of mass motional state.

4.2.1 Coupling electronic and motional degrees of freedom

A 7 pulse between the qubit states can leave the motional state unchanged, remove
one or more quanta of motional excitation, or add one or more quanta of motional ex-
citation. These are referred to as carrier, red-sideband, and blue-sideband transitions
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Figure 7: Electronic and motional energy levels of a trapped ion.

respectively. The quantum state of an ion |0) ® |n) = |0,n) is specified with two vari-
ables, the qubit state |0) or |1) and the number of motional quanta n. Unfortunately,
considering the motional states n = 0 and n = 1, a confusion might arise with the qubit
states |0) and |1). To avoid such confusion, the qubit states will now be referred as |g)
and |e). Here for the sake of simplicity, we will assume a single trapping dimension with
trapping frequency w,.

Physically speaking (figure 7), a field at frequency w, which is resonant with the qubit
level spacing drives a carrier transition |g, n) <> |e,n). A field at frequency w, = w, —w,
drives a red-sideband transition |g,n) <> |e,n — 1) and a field at frequency wy, = w, +w,
drives a blue-sideband transition |g,n) <> |e,n + 1).

We now describe this process via Hamiltonian description. The Hamiltonian of such
system can be written as H = Hy + Hi,, where Hy accounts for the motion and qubit
terms, and Hj, for the action of the laser light onto the ion. H, writes as:

Hy = hw.(1/2 +a'a) + %Z (22)

where the first term describing the motional states energies, a and a' being the the
annihilation and creation operators, and the second term describes the qubit energy.
For simplicity, we will drop the constant offset from this Hamiltonian. The interaction
Hamiltonian can be written as:

Hi = —z'7e_mem(c”“ﬂ)e_“ﬁmr + h.c. (23)

where () is the Rabi frequency, w is the field frequency, ¢ is the phase of the driving
field at the ion location, and o, = |e) (g| is the atomic raising operator. The part of
this Hamiltonian that couples to the ion center of mass is eimlatal)  The parameter

2 h
"= AV 2mw,

(24)
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with A the transition wavelength, is known as the Lamb-Dicke parameter. It quanti-

h
2mw,

transition, and therefore the quality that has the light to perform sideband transitions.
In usual ion trap quantum computers, n ~ 0.1 and we will therefore assume next that
n < 1.

fies the extent of the atomic wavefunction ( ) relative to the wavelength of the

Exercise 14. Assuming Yb™, a laser at 355 nm and w, = 27 x 5 MHz, compute the
typical Lamb-Dicke parameter value.

We perfom a first order expansion of ginlatal) — 1 4 ina + ina’ and obtain:

*

Q) 4 hOQ* .
Hy = —iTe’Z“te’w’aJr(l + ina + inaT) + iTeMew’a,(l —ina — inaT) (25)

This Hamiltonian can be decomposed into parts corresponding to different motional
state changes as Hiny = Hinto + Hing,1 + Hing-1 with:

h

Hint,O _ _ii(Qei(wt+¢)a+ . Q*ei(thrd))O',) (26)
h ) )

Hint,l — g(ﬂez(wt—f—(ﬁ)aﬁa_’_ . Q*ez(wt-i—(b)ao._) (27)
I , ,

Hine o = ?77(§2€Z(“t+¢)6Lc74r — Q*ez(“’H@aTa_) (28)

The three terms correspond to carrier, blue-sideband, and red-sideband transitions
introduced before. Note that the carrier transition has Rabi frequency €2 whereas the
sideband transitions have Rabi frequency 72 which for small 7 is much slower. A small
Lamb-Dicke parameter not only facilitates separation of the interaction into resolved
carrier and sideband transitions which is important for gate operations, but also enables
cooling of the ion to its motional ground state: the 1 reduction of coupling to sidebands
does not only apply to laser driving, but also to spontaneous emission.

Suppose we start with an ion in |g,n) and we drive a m pulse on the red sideband
to |e,n — 1). The ion will then spontaneously decay back to g while emitting a pho-
ton. Provided < 1 the motional state cannot change so the ion decays to |g,n — 1).
Repeating this process n times the ion will end up in |g,0) from which there is no
red-sideband transition. This process is known as sideband cooling, and is used in ions
quantum computers to reduce the ion temperature. This technique is also used in neutral
atoms quantum computers (although more challenging to perform due to the trapping
frequencies being much smaller in optical tweezers).

4.2.2 Engineering two qubit gates using the Mglmer-Sgrensen (MS) gate

The gate protocol is as follows. Two ions are simultaneously illuminated by a bichro-
matic field with frequencies w,, w_. We choose wy = w. + 9, w, is the carrier frequency,
and 7€) < w,—09. Asis seen in the figure 8, there are four ways in which the two ions can
absorb two photons and conserve energy to make the transition |gg,n) — |ee,n). The
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Figure 8: The MS gate uses a bichromatic laser field with frequencies w,, w_ to couple
ions from the |gg) to the |ee) state with one-photon carrier detuning 4.

effective Rabi rate allowing for all energy conserving paths is found from second-order
perturbation theory to be

~ <€€, n\ Hjnt ‘]> <]‘ Hint ‘gga n)
Q-2 29
Z Uj = Uggn + hwy 2

17)

with |j) = |eg,n £ 1),|ge,n £ 1). Summing over the intermediate states we find the
remarkable result: )
-~ (%)

Q:
Wy, — 0

(30)

The coupling rate is independent of the motional excitation n so Rabi pulses can be
accurately applied without knowing n. Due to the n factor, the effective Rabi frequency
is much smaller than €2, which is inherent to the gate protocol as the condition n{2 <
w, — ¢ is required for the gate protocol to function. The typical gate duration are in the
range of ~ 30 us.

To prepare an entangled state apply wy and w_ for a time ¢ such that Ot = /2
which gives the transformation:

l9g,n) + i |ee,n)
,n) —
l9g, 1) 7

(31)

We obtain a Bell state that is decoupled from the motional state, and we have thus
generated entanglement thanks to this protocol.

The MS gate operation Uys can be described as Uyg = e™/"12 = Ry (7/2). Tts
expression in the computational basis is:

Uvus = —=

7 (32)

-
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This gate protocol has been demonstrated to have fidelities Fyig > 99.9%. The
typical gate duration is This fidelity is limited by several factors:

e Motional heating during the gate protocol. If the motional state abruptly changes
during the gate execution, entanglement between the electronic state and the
motional state will still be present at the end of the protocol.

e As for the neutral atom case, the gate protocol relies on lasers which have intensity
and frequency fluctuations, leading to infidelities.

e The driving field is based on a Raman transition. As discussed for single-qubit
gates, there is an error associated to spontaneous emission for the intermediate
state used to perform the Raman process.

4.3 Universal gate set using a single two-qubit gate

For both neutral and ions platform, we have shown that one type of two-qubit gate can
be implemented. Combined with the capabilities of the platform to perform any type
of single qubit gate, these capabilities are enough to perform any type of gate.

Exercise 15. Assuming the neutral atom platform capabilities in terms of single- and
two-qubit gates, describe a circuit which allows to implement a CNOT gate. Describe
a circuit that allows to implement a Toffoli gate (described in Lecture 1).

Exercise 16. Same exercise but now considering the trapped ion platform.

5 Conclusion: performances study

With respect to other platforms (described in the next Lectures), atomic qubits exhibit
extremely large T} and T; values, in the order of seconds. The gate fidelities (99.99%
for single qubit gate and > 99.5% for two qubit gates) are at the level of the other
platforms. The scaling perspective in qubits number of neutral atoms are pretty unique
among all platforms. However, atomic qubits face various challenges.

First, the typical gate duration in atomic qubit, and in general the speed at which
atomic qubits can be handled, is much longer than other platforms. We’ve seen that two
qubit gates for ion traps take ~ 30 us, to be compared with ~ 100 ns on other platforms.
Qubit trapping, cooling, detection and manipulation in general is slow. Second, for the
ion trap platform, scaling to larger qubit numbers than 100 is a delicate engineering
task. Third, for neutral atom, the fact that the atoms are confined into very shallow
traps and that many different techniques must be used to perform computation imposes
a rigorous control over many parameters. Making all these techniques work at the same
time imposes long development cycles.
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