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Quantum computing is the field that studies how quantum physics could help per-
forming certain computing tasks, such as factoring, sorting, optimizing or simulating,
more efficiently that can be done on any classical computer. It relies on the binary
encoding of information on quantum bits which can be in two states |0) and |1), as well
as in any superpositions « |0)+ 3 |1). Using a stream of unitary operations acting on one
or two qubits, arranged in a circuit, quantum superposition, entanglement and interfer-
ences, when properly harnessed, provide the enhanced power of a quantum computer,
at least on the paper.

The reasons why quantum computing is an interesting field of research are several.
First, when available, quantum computers hold the promise to solve certain tasks more
efficiently than what be done on a classical computer: this is the case of factoring which
finds applications in cryptography ensuring secured information transfer on the Internet
for example. This is also the case of searching into large lists an item with specific
properties, an example of a decision problem. This is also the case of the computation of
the electronic structure of large molecules or of materials that could have impact on our
societies. But those are for the moment only promises, and it remains to be seen whether
one can build such a machine and devise algorithms that make use of them. From the
point of view of physicists and engineers, building a quantum computer and thinking of
how it can be used present interesting challenges. Physicists have to come up with new
ways of controlling quantum systems, eventually by quantum feedback, understand how
they can be isolated from the environment and why using quantum physics provides
enhanced performances. In a nutshell: they need to learn how to control, stabilize and
characterize a quantum system consisting of thousands if not millions of qubits, which
amounts to testing and pushing quantum physics into uncharted territories. Thus, even
if we never have a large scale quantum computer, we would not have wasted our time as
we would have tested quantum physics extremely precisely. For the engineers, it means
developing new, better lasers, microwave sources, photon detectors, control softwares
and so on.

Although today elementary quantum computers already exist, handling about 100
qubits and running a few hundred gates, they are far from being able to perform “useful”
tasks. The main reason why scaling up is hard roots in the coupling of this large quantum
system to the environment which results into a collapse of the qubits from a quantum
superposition to a diagonal density matrix:

[¥) = a]0) + B[1) = p = |a]*|0) (O] + |81 1) (1] . (1)

The good news however is that there exists strategies to fight decoherence, which are
called Quantum Error Correction and Fault-Tolerant architecture. As we will see, they



are absolutely necessary if one wants to build a functioning quantum computer, and we
will devote three lectures in this course to understand how this works.

1 Brief history and motivations

See slides.

2 Quantum bits and quantum gates

The classical information manipulated by any digital device is encoded in binary using
bits that can take the value 0 or 1. Any integer number x has a binary decomposition
of the form:

=Ty 1 X2 o, o x2" 24 4y X247, (2)

where the z,, € {0,1}. For example: (011) = 3,(111) =7, and so on.

Quantum mechanically, the qubit has also two states |0) and |1) that form the basis
of a Hilbert space of dimension 2. It can be prepared in any superposition « |0) + 31).
Owing to the fact that the overall phase of the state is irrelevant and that the state is
normalized, two numbers are enough to define the general state of a qubit, which is then
parametrized as:

) = Cosg |0) 4 sin g e 1) . (3)

The state is fully determined by two angles # and ¢, in the same way any unit vector
u in R? is defined by its spherical coordinates. This mapping between the qubit state
and a vector on a unit sphere allows one to represent a superposition state, as shown
in Fig. 1: the vector u(f, ¢) is called the “Bloch vector” and the sphere is named the
“Bloch sphere”. For example, the states |0) and |1) are represented by the two poles,
while the state (|0)+|1))/v/2 points along 2 and (|0) +4 |1))/v/2 along y. As a reminder,
be careful that the states |0) and |1) are orthogonal in the Hilbert space (i.e. (0|1) = 0),
but their associated Bloch vectors are anti-parallel.

We can then define the state |z) = |z,_1,2n_2, ..., 21, %0) With x, € {0,1} as the
quantum encoding of the number x. It requires n qubits. What we have gained in doing
so is the ability to encode a superposition of two of more numbers, for example on a
three-qubit state: . .

7 \/5(!3> +17)). (4)
Classically this is impossible and we would need two sets of three bits to encode the two
numbers.

To manipulate classical bits, one relies on gates. For example the NOT gate applies
the operation x — 7, i.e. 0 — 1 and 1 — 0. It is an example of a single bit operation.
More interesting are two-bit gates such as the XOR gate that takes two binary inputs
x and y (see Fig. 2a) and outputs a single bit = @ y, where @ is the addition modulo 2.

(10) + ) @) 1) =



11)

Figure 1: Bloch vector pointing on the Bloch sphere (from Wikipedia).
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Figure 2: Examples of classical (a) and quantum (b) gates acting on one or two (qu)bits.



Exercise 1. Write the table of truth of the XOR and NAND gates. The NAND gate
is defined by (z,y) — ZT3.

The important property of the classical gates as used in our computers is their irre-
versibility. They erase one bit of information, and one can show that this corresponds
to a fundamental energy cost kg7'In 2 with T the temperature of the environment that
the computer is placed in (Landauer’s principle). One can theoretically construct re-
versible classical gates such as the CNOT or Toffoli (see below), and although not used
in practical algorithms, this construction is a useful guide to develop quantum gates.

Quantum mechanically, acting on quantum bits means performing unitary operations
on them. Thus, for any state |¢)y) of an ensemble of N qubits, a gate performs the
unitary transformation U

£ o
[Yn) = Uldy) (5)
such that UUT = 1, ie. Ul = U, In analogy with classical computing, single and
two-qubit gates are important.

Single-qubit gates. Among the useful ones, one finds:

e the X, Y and Z-gates which are represented by the Pauli matrices in the {|0),|1)}

basis:
. 01 A 0 —i . 1 0
(Vo) =(07) =(0 L) e

Note that in quantum computing, the convention is to use X , 37, Z rather than
a'xa &ya a'z-

e the Hadamard gate represented by the matrix in the qubit basis:

)

e the phase gate lj¢ and the special cases S = \/E and T gates:

~ 1 0 A 10 o 1 0
U¢:<O€i¢) SZ(OZ) T:(Oeiw/él)' (8)

All these gates can be represented as a circuit, as represented in Fig. 2(b).

Exercise 2. Remember that a rotation by an angle o around an axis n = (n,, ny,n,)
corresponds to the unitary transformation:

Ru(a) = exp [—i% o n] = cos (%) 1 —isin (%) o-n. 9)

with & = (X,Y, Z). Show that H = ZR,%Z (7) and H = iR, (7/2)R.(r). Represent the
2
action of the Hadamard gate on the Bloch sphere.



Exercise 3. Show that any unitary transformation U on a single qubit can be
decomposed as

U =e“R.(6).Ry(7)Rau(d) . (10)

Two-qubit gates and controlled operations. They act on two input qubits and
have two outputs. Often one of the input qubit is called the control qubit the other one
the target. These gates are reversible, as they correspond to unitary transformations.
Among the important ones:

e the CNOT (Controlled-NOT) gate whose matrix representation in the two-qubit
basis {]|00), |01),[10),|11)} is:

1 000
A 0100
0010
e the Controlled-Phase gate and the related Controlled-Z gate:
100 0 100 O
~ 010 0 ~ 010 O
bes=11001 o Vez=11001 o0 (12)
0 0 0 ¢ 000 —1

Their circuit representations are shown in Fig. 2(b). The essential property of these
two-qubit gates is that they generate entanglement between the two qubits.

Exercise 4. Show on examples that this is the case.

Multi-qubit gates are also useful, such as the Toffoli gates which involves three qubits.
[ts circuit representation and working principle is shown in Fig. 2(b).

Finally, the last important manipulation on qubits is the projective measurement.
Conventionally, it is performed in the qubit basis (often called computational basis).
This operation takes any input qubit state and outputs |[0) or |1). Tt is irreversible. Its
circuit representation is a square box with an arrow in it.

Exercise 5.  Write a small circuit that allows you to measure in the basis |0), =

(10) +11))/v2 and [1), = (|0} — [1))/V2.

3 Quantum circuits and algorithms

Any classical algorithm is realized by a circuit consisting of a sequence of gates. It turns
out that if you have only NAND and XOR gate you can run any algorithm. Those two
gates form a universal set of gates.

The same idea can be applied to the quantum case, although as usual with some
subtleties. At a high-level, an algorithm is a unitary evolution under the operator U of



the quantum state |¢;) of a set of qubits forming a quantum register into a final state:
lib¢) = U |4¢). This unitary evolution ends by a measurement of the state of the register,
which is supposed to yield the answer of the calculation. We will see in the Lecture 5
and 6 how this works in practice.

The question is now how we can construct the evolution operator U from the quantum
gates we have discussed in the last Section. The answer implies three steps, for which
we will only state the results. Their demonstrations are technical. If you are interested,
you can look in [1], Chapter 4, Sec. 4.5.

1. Any unitary operator acting on N qubits can be constructed from at most d(d —
1)/2 (d = 2%) two-level unitary gates. A two-level unitary gate is described by a
matrix which acts non-trivially only on two of less vector components. Examples
of such matrices for the 3 x 3 case are:

1 00 a b 0 a 0 b
0 a b c d 0 010 ) (13)
0 ¢ d 0 0 1 c 0 d

Two-level unitary gates are thus universal. But they may be hard to calculate.

2. Any two-level unitary gate can be decomposed ezxactly into single-qubit gates and
CNOT gates which are therefore universal. You need O(N?4") of such gates.

3. So far the single-qubit gates can be any, with the general form given by (10). For
practical (and theoretical...) purposes, we would like to use only a discrete set of
single-qubit gates. But then it becomes impossible to generate any arbitrary uni-
tary operator acting on N qubits. Fortunately, we can approximate any arbitrary
operator U to an arbitrary precision € using a discrete set of universal gates. The
standard choice of set consists of Hadamard H , phase gate S , T-gate T and the
CNOT gate. Another, less standard, set is H , S , Toffoli and CNOT.

Approximating a unitary operator U by another one V = IL,U® which is the
product of one and two-qubit gates means minimizing and error function €(V)

defined by o

eV) =T =V)L) 1, Vi) . (14)
Reaching a precision € means finding the decomposition V such that (V) < e
It turns out that in order to approximate a general unitary operator acting on
N qubits with a precision € you need O(2¥1In(1/¢)/In N). In general this is then
hard... This is also why it is difficult to find algorithms that present an exponential
speedup with respect to the classical ones.

The choice of the universal gates set calls for an important remark. As you can
check, S =172, so we may naively think that choosing S and T is redundant. However,
the Gottesman-Knill theorem shows that you can efficiently simulate on a classical com-
puter (i.e. in polynomial time) any circuit that is built solely using S, H and CNOT.
Such circuit does generate entanglement but not the kind of entanglement you need to
speedup a calculation. One says that {ﬁ , S ,CNOT} form the Clifford group: It can
generate quantum states with up to N2 components for N qubits, instead of the full 2%V



that quantum physics allows. Adding the T-gate T takes you out of the Clifford group
(one calls it a non-Clifford operation), and now allows you to generate any amount of
entanglement.

Exercise 6. Try to understand why a circuit that uses only the operators from Clif-
ford group, can generate restricted states. Explain then why the T-gate removes this
limitation (discussing with an Al maybe useful to develop an intuition).

In this Lecture we will not develop more the algorithms that one can implement
using the universal gate set introduced above. We will study in details in Lecture 5 and
6 the main quantum algorithms: search (Grover), phase estimation, quantum Fourier
transform and their application to factoring (Shor). It is enough here to state that
many online emulators exist that you can play with to create your own circuits: Qiskit,
Quirk...(look on the Internet!). We will use them in the coming Lectures.

As a final application of the quantum circuit model, let us come back to the idea
introduced by Richard Feynman in 1982 to use a quantum machine to simulate quantum
physical systems such as interacting electrons in a crystal, interacting spin systems,
or any many-body Hamiltonian that is considered a good description of a physical
system. Finding, for example, the time-evolution of these many-body systems amount
to calculating the evolution operator U(t) = exp(—iHt/h), with H the Hamiltonian of
the system (not the Hadamard gate... notations are unfortunate). In general this is a
hard problem for many Hamiltonians, for example the Fermi-Hubbard Hamiltonian for
interacting fermions

Hpy=J Y éle; + U hpny, (15)
(i.7) '

)

or the Transverse field Ising Hamiltonian for spin 1/2:

Hygng = J Y 6767 +BY ol . (16)
(4,5) d

However, most of these many-body Hamiltonians are of the form H= doe H,, with Hy

involving single or two bodies, for which calculating exp(—iHjt/h) is easier. Fortunately,
the Suzuki-Trotter decomposition helps:

exp[—i(A 4+ B)] = lim (exp[iAt/n]exp[iBt/n])" . (17)

n—oo

Thus, the evolution operator U can be decomposed into a series a of “easy” to calculate
terms when you split the time ¢ into interval of duration ¢/n (one calls this procedure a

“trotterization” ):
U(t) = [e_z%ﬂ = [He_’hki] ) (18)
k

Exercise 7. Demonstrate the Suzuki-Trotter formula (17).
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Figure 3: Quantum circuit to synthetize the 3-body spin interaction ﬁgbody described
by Eq. (19). The circuit calculates exp|—iHzpoay At].

It is therefore possible to synthetise any Hamiltonian with this digital approach,
including the ones that do not involve interactions between particles allowed by Nature.
As an example, consider the Hamiltonian describing the interaction between three spins

Hapoay = 0% @ 0% @ 0% . (19)

This 3-body Hamiltonian does not correspond to any physical interaction, as only two-
body interactions are found in Nature. However, it can be digitally synthetized using
sets of CNOT gates and the unitary evolution of a fourth auxiliary qubit, as shown in
Fig. 3.

Exercise 8. Show that the circuit in Fig. 3 calculates the evolution of exp[—ﬂ:[ 3body At].

As can be seen on this example, the implementation of an arbitrary Hamiltonian
may require auxiliary qubits and therefore may not necessarily scale favorably with
the number of particles to consider. Using the digital approach, one can perform a
universal quantum simulation: the quantum simulator does not need to be rebuilt for
each Hamiltonian H to be studied, but just reprogrammed for a specific problem.

4 Parallelism and interferences

We now ask the question of why using quantum physics allows performing certain tasks
more efficiently than on a classical computer. One reads almost everywhere that this
comes from the parallelism: as the calculation can be done in parallel on all the qubits
at once, the calculation is more efficient. Even if this statement is not wrong it hides
many subtleties. Let us formalize it. Consider a quantum register that is prepared in a
superposition of several classical number, for example the three qubit state:

|z} oc ([0) + [1)*" = [0) + [1) +[2) + ... [6) + |7) - (20)
Then the operation Uy acting on |z) should lead to:

[£Q0)) + 1F (1) + [£(2)) + - £ (6)) + [(7)) (21)

i.e. the superposition of all the results. Assuming that this is correct (and it is not,
see below...) we face a problem as the measurement yields one of the results randomly.
But even worse, such operation is not unitary: you can not perform the operation

8
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Figure 4: (a) Operation of a function f. (b) Circuit representation of the Deutsch
algorithm.

|z) — |f(x)) directly, as it does not correspond to a unitary transform except in the
very special case of a bijective function f. Rather, one has to consider the two-qubit
transformation, represented in Fig. 4(a):

A~

Uy : (2,y) = (2,9 @ f(z)) . (22)

Exercise 9. Show that this transformation is unitary with U]? =1.

Now the correct way to understand the parallelism is the following one, illustrated
here on the case of two qubits. Initializing the control qubit in (|0) + |1))/v/2 and the
target qubit in |0), the output is

1
E

Indeed the operation took place on the two qubits at the same time, but now control
and target qubits are entangled!

To understand how one can find the result of an algorithm running on the quantum
computer, we consider now the very first one, introduced by David Deutsch, which shows
that interferences are key resources. This “Deutsch algorithm” is academic but it does
illustrate how quantum can be more powerful than classical. Consider a boolean function
f 40,1} — {0,1}. There can be four possibilities for f: either f(0) = f(1) = 0,1
(constant) or f(0) # f(1) (non-constant). Can we decide with a minimal number of
queries whether the function is constant or not? Classically, you need two queries to
calculate f(0) and f(1). Let us now run the quantum circuit represented in Fig. 4(b).
With the notation of the figure:

(10, £(0)) + 1, F(1))) - (23)

) = 200y + [1)(10) ~ 1)) = 5 (Z |x>) (10) - 1) . (24)

To calculate the action of U 7, we first look at the two cases

flx) = 0:]z)(|0) = 1)) = |z) (|0® f(2)) — 1 & f(x)) = |=) (|0) —[1)  (25)
flx) = 1:]z)(|0) = 1)) = |2) ([0® f(2)) — 1@ f(x)) = |z) (= 0) +[1) . (26)

Up |0) =

(Z(—l)m) \:lf)) (10) = 1)) (27)

=0

N | —
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Figure 5: Principle of a Turing machine (From Ref. [2]).

After the application of the last Hadamard gate on the data qubit, we find it in the

state

1 1
— [(=1)fO L (1) DT 0y + — [(=1)O — (—1)7®] 1 28
\/5[() ()M)\/ﬁ[() (=71 ) (28)
What we have done with the last Hadamard gate is interfering the amplitudes (—1)7®).
And now, if we measure on the data qubit |0), we know that the function is constant,
otherwise we should get |1). We have reached our goal using only one query, thanks to

the interference of amplitudes!
Exercise 10. Find an interferometric version of the algorithm.

When we describe the quantum algorithms in Lecture 5 and 6, we will look at where
the interferences and the entanglement play a role.

5 Algorithmic complexity

We want to understand a bit better in which sense a quantum computer can be more
efficient than a classical machine. This is the topics of algorithmic complexity, which is
a whole field of research that we will only touch upon.

Let us start by what means “calculable”. The british mathematician Alan Turing
defined in 1936 the concept of calculable by inventing a machine which runs a series of
instructions to perform the calculation. This Turing machine is an abstract concept,
whose principle is shown in Fig. 5. In a nutshell the machine has two components: a
ribbon with numbers or letter {¢;} written in boxes, and a moving head carrying an
internal state which can take values in a set {s;}. When the head reads ¢; in a box on
the ribbon its internal states determines the updated value g; of the ribbon, and at the
same time its new internal state sy. The internal states of the head also determines
whether the head moves left or right at the next step. The sequence repeats until it
stops. The Church-Turing thesis states, roughly, that a function is calculable if it can
be calculated by a Turing machine. Don’t believe this is obvious: there exists functions
that you cannot calculate (actually even a non countable set of such...). As far as we
know, it is not conceivable to devise a machine that can calculate something that a

10



Turing machine can not, not even a quantum computer. Hence a quantum computer
will never be able to perform a task that a classical computer can not do...

The difference between classical and quantum computers is therefore a question of
efficiency: how fast can you perform a calculation? To discuss the efficiency of an
algorithm, let us introduce L = log, x the number of (binary) digits you need to code
the integer x in binary, and s the number of steps you need to perform a calculation on
x. The efficiency is a statement about the scaling of s with L. For example multiplying
two numbers with L digits require s ~ L? steps, a polynomial number of steps. On the
contrary, the best factoring of a number of L digits requires O(exp(1.9LY3(In L)?/3)), i.e.
a nearly exponential scaling. Problems for which s scales polynomially with L (s ~ L%)
are considered easy, while problems scaling exponentially (or sub-exponentially as for
the factoring) are considered hard.

Complexity theory states that you cannot change the complexity of a problem by
changing the classical computer you use. Hence complexity becomes an intrinsic prop-
erty of the algorithm, and one can define complexity classes. The class P contains
problems that scale polynomially with L. The class NP contains problems for which
the solution can be checked in polynomial number of steps. Factoring is such a prob-
lem: when you know the decomposition in prime factors of a given number, you can
easily check that this is the solution. Intuitively P C NP. Now an open question in
complexity theory is whether P = NP or not. If this is true, we should be able to find
a factoring algorithm that scales polynomially with L...!

Interestingly, a quantum computer can change the class of complexity of a problem,
and this is what got people excited about quantum computing. For example factoring
a L-digit number by the Shor’s algorithm requires O(L3) operations, a huge speedup
with respect to the known classical algorithm (but remember: we don’t know whether
a polynomial algorithm exists...). The Grover search algorithm provides a quadratic
speedup: searching an element in a list of L entries requires classically ~ L/2 queries,
while the quantum version requires ~ /L. So here, if the quantum algorithm does
provide a speed up, it does not change the class of complexity. The class of problems
that can be solved efficiently on a quantum computer is called BQP (bounded quantum
polynomial). The exact relation between P, NP and BQP is still a subject of research,
and there are many other classes that have been introduced.

Exercise 11. Calculate the time needed to break RSA 2048 on a Macbook pro
operating a 3 GHZ and a quantum computer with the same clock frequency.

6 Quantum errors and their correction

As we saw above, quantum computers hold the promise to provide an exponential
speedup for certain tasks (arguably not many so far...). To obtain this, the machine
has to run a quantum circuit consisting of many (really many...) gates. However when
it comes to the practical implementation of this gates on a physical hardware, they
will have errors that can be minimized but probably not to an arbitrarily low rate.
Decreasing this rate is to a large extend an engineer problem.

The consequence of these errors is that after each gate, the probability of success will

11



be 1 — ¢, and assuming that errors are independent and of the same order of magnitude,
the probability of success of a quantum circuit operating N gates will be (1—¢)" a2 e V¢,
an exponential suppression. Operating N = 1000 gates thus requires ¢ < 1072, If you
want to run Shor’s algorithm on L = 2048, you need O(10'Y) gates, and therefore
e < 1071% Not easy... It thus seems that the promises for exponential speedup is
plagued by the exponential scaling of the influence of the errors. This problem was
identified as early as 1995 by Peter Shor [3], who proposed a method to code in a more
robust way, and to correct the errors. We will discuss in details this subject in Lecture
7-9. Here we only sketch the idea.

(Classically, errors can only occur as bit flips: 0 — 1 or 0 — 1. Today’s comput-
ers have a probability of errors per operation around 1078, quite amazing actually.
Quantum mechanically errors have three forms, making them harder to cope with:

e bit flip: [0) — [1) or [0) — [1);

e phase flip: for example |1) — —|1). This is a problem as the qubit |0) + |1) is
changed into the orthogonal state |0) — |1);

e small error: |0) — |0) + €]1). It looks like a continuous error, but this is not: if
you measure the state of the qubit you will get |1) with a probability €2. So thanks
to the measurement process, this error is also digital (more in Lecture 7).

The strategy to fight the errors in classical computing relies on redundancy. To
illustrate the idea, take three bits and introduce the logical bits Or, = (0,0,0) and 1, =
(1,1,1). If a bit flip error occurs with a probability €, the logical bit O, is transformed
into (1,0,0), (0,1,0) or (0,0,1) with a probability P, = 3¢(1 —¢€)?, into (1,1,0), (0,1, 1)
or (1,0,1) with a probability P, = 3¢2(1 — ¢), and into 1y, = (1,1, 1) with a probability
P3 = €3. The probability that no error occurs is (1 — €)3. Now if we detect a single bit
flip, a majority vote argument allows us to decide that an error occurred and to correct
for it. The problem occurs when at least two flip errors occur as now we can not decide
whether it was a two flip error from O, or one bit flip from 1. Thus the correction
of error by flipping back the error following a majority argument works when at most
one error occured. The error rate of the logical qubit is thus the one resulting from the
impossibility to apply the majority vote argument:

e, = Py + Py =3¢ — 26 . (29)

Hence, for e < 1/2, the error rate of the logical bit is smaller than the one of the single
bit, and by a lot: if € = 1073, we get e;, = 3 x 107%! However, this scheme requires an
overhead in the number of bits.

Applying bluntly the redundancy strategy to the quantum case has however two
problems. First we can not measure the state of a quantum bit without destroying it
(which is possible classically). Second we can not clone unknown quantum states and
thus the redundancy strategy could fail.

Exercise 12.  Demonstrate that you cannot clone an unknown state |¢)) without
destroying it (no-cloning theorem). Assume you could. This would mean that if you

12
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Figure 6: (a) Detection of classical errors by parity measurement. (b) Circuit used to
detect an error by measuring auxiliary qubits in the Z-basis: the circuit measures the
parity between the qubits 1 and 2, and 2 and 3.

have two qubits, one in state [¢), the other in state |0), you could construct a unitary
operator U such that U(|¢) [0)) = |) /). By considering two non-orthogonal states
1) and |¢) and the fact that U conserves the hermitian product, show that this is not
possible (Wooters and Zurek 1985).

To extend the idea of logical bits to the quantum realm, let us define the two logical
quantum bits: |0p) = |000) and |1,) = |111). If we prepare a superposition |0p) +
|11,) and if a bit flip occurs leading to, say, |001) + |110), we can detect the error
getting inspiration from the classical case: to detect that an error occurred on one bit
and localize which one, we can measure the parity of consecutive bits, x, & x,.1, as
represented in Fig. 6(a). Quantum mechanically, this can also be done by adding two
auziliary qubits (often also called ancilla qubits) and performing the circuit shown in
Fig. 6(b): it measure the parity between the qubits 1 and 2, and 2 and 3, leaving their
state untouched. In this way, you can tell where the error took place and correct for it.
Of course, here we measure only qubit flips, but the strategy can be extended to phase
flip by measuring in a different basis. We will study all these in details in Lecture 7-9,
but the key idea here is that you can detect and correct quantum errors, at the price
of an overhead in the number of qubits: first to build the logical qubits and second to
add auxiliary qubits to detect the errors. The good news is that if the errors on the
physical qubit are low enough, you suppress the logical qubit errors exponentially with
the number of physical qubits forming the logical qubits (threshold theorem).

One defines a quantum error correction code by a set of three numbers (that may not
be independent): [n, k, d], with n the total number of physical qubits, k& the number of
logical qubits that you construct from the n qubits, and d the code distance related to
the number of physical qubit errors that the code can detect (usually d — 1) and correct

(d—1)/2.
7 Qubits in practice

We finally get to the point where we need to worry about the implementation of all the
abstract concepts discussed above. The detailed discussion of the leading physical sys-
tems onto which encoding qubits will fill the next three lectures. Here we will highlight
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general properties of the qubits generic to all platforms.
Around 2000, David DiVicenzo from IBM introduced a set of five criteria that a
candidate physical system must fulfill to be a viable qubit:

1. The physical system can be well isolated, and can be replicated (scalability);
2. It can be initialized in one of the two states;

3. It can be measured;

4. Tt can be manipulated by a universal set of gates;

5. It should have a long enough coherence time to keep the superposition state « |0) -+
B 1) coherent during the whole manipulations.

Sometimes, one also adds two criteria relevant for quantum communication:
1. The ability to interconvert stationary and flying qubits, and
2. The ability to transmit flying qubits between distant locations.

Today, the leading platforms fulfilling these criteria are: laser cooled trapped ions
and atoms, superconducting quantum circuits, photons, spin of electrons trapped in
quantum dots. Historically the platform based on nuclear magnetic moments (NMR)
was the first to be demonstrated, but it is no longer considered promising even though
it strongly influenced the development of the other platforms. We should however be
careful when talking about leading platforms: history has taught us that newcomers are
always possible, and sometimes promising platforms show unexpected limitations...

7.1 Coherence properties of qubits

As a reminder, a pure qubit state has the form |¢)) = «|0) + (]1). It corresponds to
a perfectly isolated system, and it is thus an idealization. As no physical system is
perfectly isolated, the proper description relies on the density matrix of the qubit:

N Poo  Po1
= ) 30
P (Plo Pn) (30)

The diagonal coeflicients pgy and p;; are called populations, and the off-diagonal ones
po1 = plo are named coherences. For a pure state poy = |a|?, p11 = |B]?, and py = aB*.
The density matrix fulfills Tr[p] = poo + p11 = 1 and |po1]? < poop11, with the equality
holding for a pure state. The purity Tr[p?] < 1 distinguishes pure and mixed states.
The coupling of the qubit to the environment is usually accounted for phenomeno-
logically by a damping of the populations and coherences. One introduces the lifetime
T of the qubit (for example due to spontaneous emission) such that p1; = —p11/7}.
In the same way, the coherences relaxes with a time scale Ty such that pgy = —po1 /1.
As you saw in the Light-Matter Interaction course, a qubit which can decay only by
spontaneous emission fulfills 7, = 27}. In the more general case where the qubit can
also dephase by other means, for example dephasing due to a fluctuating environment
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(see HW6 of the Physics of Quantum Information course), one introduces a time T3 so

that
1 1 1

TR
The formal description of the effect of the environment on a qubit relies on the Lindblad
formalism:

(31)

5relax = Z(iapsig -
a#0

SilLaps — 1pshl) (32)
2 2

Each jump operator L., describes a decoherence channel. For example a bit flip around
x corresponds to an operator L, = ﬁX , and a dephasing (or depolarization) along z
to ﬁz = ﬁZ .

Importantly, a description by a Lindblad form implies an exponential decay of the
coherences and populations. But this is not always the case. Take for example an
ensemble of qubits with a spread of frequencies w; around a mean wy (inhomogeneous
broadening, as for the Doppler effect in a gas of atoms, or a spatially varying crystalline
environment in a solid). The coherences of the qubit ¢ will freely evolve according to
p(()il) (t) < e”™it so that the average for all the ensemble will be pg;(t) oc (e~™it).
Exercise 13. Assume that the frequencies w; have a gaussian distribution. Calculate
the evolution of pg;(t) and show that it is not exponential.

7.2 Control of the qubits

Any gate acting on a qubit results experimentally from its coupling to a classical elec-
tromagnetic field, such as the one emitted by a microwave generator or the optical field
of a laser. This coupling is described by the following Hamiltonian:

- ho o  hQ, . . o

Hcoupl. = _?Z + 7(6Z‘p0+ +e S00——) ) (33)
with § = w — wp the detuning of the frequency of the field with respect to the one of
the qubit’s transition wy. This expression is valid in the Rotating Wave Approximation
(RWA). Also, 6, = o = |1) (0|. When the phase of the driving field is ¢ = 0, the
second term takes the form (h€2/2)X.

The differential equation ruling the evolution of the density matrix p is then

) 1 )
)= — Hcou ) ) Are ax - 34
p= 2 [Heoupt, Pl + Pren (34)
It leads to the Bloch equations in the RWA:
P11 = —%111 —1 (Epm - 7/)10) ) (35)
) 1 . Q
por = — | =+ ) por —i= (P11 — poo) - (36)
T 2
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The solution in the case T, Ty — oo (perfect qubit) are the Rabi oscillations.

To measure experimentally the phenomenological decay and dephasing times 77 »,
one applies the following procedure. For the decay time 77, excite the system in the
state |1) and measure the population remaining in this state after a time ¢. This is done
in practice by repeating the measurement many times on the same qubit, or one time
on a collection of qubits and counting the number N;(¢) of qubits in state |1) for NV
measurements. We should find Py (t) &~ Ny(t)/N oc e /™t from which we extract 7T}.

The measurement of the dephasing time 75 relies on Ramsey spectroscopy. Starting
from a qubit initialized in |0), we first apply a m/2-pulse, say around the y axis, thus
preparing (|0) 4 [1))v/2. We then let the qubit evolve freely at a rate § with respect to
the microwave frequency, leading to (|0) 4 e~ [1))v/2. A second 7/2-pulse after a time
T mixes the state |0) and |1) and yields a probability Py(T) = sin(67/2)%. If the envi-
ronment fluctuates during between the two pulses the probability Py(T) = (sin(67/2)?)
decays as a function of T, with an envelope that depends on the noise model and from
which we extract 75.

Exercise 14. Assume that 6 has a gaussian distribution. Calculate the envelope of
Py(T).

Exercise 15. Illustrate the Ramsey sequence on a Bloch sphere.

Exercise 16. Write a circuit implementing the Ramsey spectroscopy and propose an
interferometric analogy.

A variant of the Ramsey spectroscopy consists in setting 6 = 0 and applying a second
7 /2-pulse dephased by ¢ with respect to the first one. One finds then Py(T') = sin(¢p/2)?
(show it...).

Importantly, there exists methods to fight certain types of dephasing or noise. They
are called dynamical decoupling methods and are key ingredients in the realization of a
quantum computer, as we will see later. The simplest one is the spin-echo (or Hahn)
sequence. It consists in applying between the two 7 /2-pulses of the Ramsey sequence a
m-pulse that flips the qubit states |0) and [1). In this way the evolution in the second
half of the sequence, after the m-pulse, leads to a rephasing of the dynamics in the case
of inhomogeneous broadening. Other techniques exist that combine various pulses and
that allows to partially compensate for pulse errors, i.e. when the area of the pulse
differs from the targeted one by an amount e.

The next three lectures will illustrate these methods on specific implementations of
qubits.
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