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The existence of quantum superpositions and of entanglement have been intensively,
and so far successfully, tested in the microscopic world. Moreover, we have pointed
out in Lecture 3 the fact that most states of a multi-partite system are entangled. It
seems therefore surprising that entangled or superposition states are never observed in
our macroscopic world: we never see a book half open and half closed, or a cat half
dead and half alive. This was of course discussed very early on in the development of
quantum physics. Yet, today, we still don’t have a general answer to why this is the
case. We don’t even know if there exists a boundary between our classical world and
the microscopic world.

In the 1980’s, physicists started to realize the importance of the fact that all quan-
tum systems are, even if very weakly, coupled to an environment with which they get
entangled. This is the same idea as the one we have developed over the last lectures,
here tailored to explain how the classical world could emerge from the coupling to an
environment. This framework is called decoherence, and we will introduce its basic
concepts here. This is a subtle subject, which is a consequence of the principles of quan-
tum physics. As such, decoherence does not explain one intriguing feature of quantum
physics, namely why a measurement gives a particular result on a given realization of an
experiment (“collapse” of the wavefunction). But it helps understanding why classical
states are special and are the ones that emerge in a measurement.

The subject is still in development. Experimentally, this is a very relevant problem,
as decoherence is what, for example, makes large quantum computers so hard to build.
Conceptually, one witnesses heated debates about the meaning of decoherence and the
problems it solves or does not solve. For more details on this conceptual aspects, see
the references at the end of this lecture notes.

1 Decoherence as a loss of coherence in large sys-

tems

We have already touched this problem in Lecture 3 when we discussed why entangled
states are fragile. We rephrase here the argument using the concepts introduced in
Lectures 6 and 7.

Let us consider a qubit α |0〉+β |1〉 coupled to an environment that dephases it (see
problem A.3 of Lecture 7). The Kraus operator associated to a dephasing is

√
γ σ̂z, and
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the corresponding Lindblad equation reads:

dρ̂

dt
= γ(σ̂zρ̂σ̂z − ρ̂) , (1)

using σ̂2
z = 1. This equation gives for the coherence ρ01 = 〈0|ρ̂|1〉, ρ̇01 = −2γρ01 and

hence, ρ01(t) = αβ∗ e−2γt. The quantum superposition turns into a statistical (classical)
mixture: ρ̂ = |α|2|0〉〈0|+ |β|2|1〉〈1|. This takes a typical time 1/(2γ).

Consider instead a GHZ state of N atoms, |GHZ〉 = (|000...〉 + |111...〉)/
√

2. The
dephasing Kraus operator is now

√
γŜz, with Ŝz =

∑
n σ̂

z
n. Using σ̂iσ̂j + σ̂jσ̂i = δi,j, and

hence Ŝ2
z = N 1̂, the Linblad equation for the N -atom density matrix is:

dρ̂(N)

dt
= γ(Ŝzρ̂

(N)Ŝz −Nρ̂(N)) . (2)

Therefore, the coherence ρ
(N)
01 = 〈000...|ρ̂(N)|111...〉 evolves as ρ̇

(N)
01 = −2Nγρ

(N)
01 . Hence

ρ
(N)
01 (t) ∼ e−2Nγt, and the density matrix becomes again a classical mixture

ρ̂(n) =
1

2
|000...〉 〈000...|+ 1

2
|111...〉 〈111...| (3)

after a time now given by 1/(2Nγ). We recover the general rule that if a single qubit
dephases at a rate γ by getting entangled with an environment, a superposition state of
the form GHZ (often called a “cat state”) dephases N times faster. As an example, take
the best atomic qubit in 2024: it has a coherence time of nearly a minute. A collection
of 106 of such qubits prepared in a GHZ state (no one has done it yet...) thus dephases
in 60µs, and one mole in 10−21 s! This sensitivity of entangled states to noise has been
checked experimentally, for example using a chain of up to 8 trapped ions prepared in
a GHZ state [5]. The results of the experiment are shown in Fig. 1.

At the end of this discussion, it looks like we have more or less solved our initial
problem: we don’t see superposition states of a large number of particles simply because
they get entangled rapidly with the environment, thus killing the coherences, i.e. making
the density matrix diagonal. This simple description of the decoherence process however
hides many subtleties.

First, one has to be careful with the interpretation of the fact that we obtain a
statistical mixture of states. For any density matrix one can always find a basis where the
density matrix is diagonal, hence appearing as a statistical mixture...: but diagonalizing
is a unitary transformation. The important point about making the density matrix
diagonal by coupling the system with an environment is that it results from a non-
unitary evolution of the system. Therefore the relevant quantity to consider is the
purity of the state: decoherence transforms a pure state of a system (Tr[ρ̂2] = 1) into a
mixed state (Tr[ρ̂2] < 1).

The second striking feature observed on the example above is the fact that the basis
where the density matrix is diagonal consists of classical states (|0〉 or |1〉 for one qubit;
|000...〉 and |111...〉 for N qubits). This is already what we know from the Schrödinger’s
cat tale: the two basis states into which the cat decoheres are |Dead〉 and |Alive〉, and
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Figure 1: (a) Evolution of the coherence ρ
(N)
01 (t) of a GHZ state in a chain of trapped

ions, as a function of the waiting time following the preparation of the state. The various
curves correspond to different ion numbers. (b) Scaling of the decoherence rate with the
number of ions: here we observe a N2 scaling instead of linear as in the text, the noise
being different from pure σz-dephasing. Figures from [5].

not the states |Dead〉± |Alive〉...! Why is it that the coupling to the environment seems
to select the classical states as the privileged basis?

More generally, and related to the previous point, why is it that when we perform a
measurement, we obtain outcomes that are classical? In a Stern and Gerlach experiment,
if we send an atom in the state |↑〉+|↓〉, we do not observe a superposition of two spots...
It therefore seems that there exists particular states of the measuring device (we will
call them pointer states) that are selected in a measurement and that are classical. We
will discuss this in the remaining of these notes.

2 Entanglement and “which-path” information

Let us first revisit the coupling of a qubit to an environment, and connect it to the idea
of “which-path information” and the loss of coherence.

Take an initial state of a {qubit S + environment E} system of the form:

|ψSE(0)〉 = (α |0〉+ β |1〉)⊗ |E〉 . (4)

After some interaction time t between S and E, which we will specify later, we obtain
in general an entangled state:

|ψSE(t)〉 = α |0〉 ⊗ |E0〉+ β |1〉 ⊗ |E1〉 . (5)

Importantly, at this stage |E0〉 and |E1〉 are not necessarily orthogonal. Introducing an
orthogonal basis set of the environment {χm}, the density operator of the qubit is thus:

ρ̂S = TrE[|ψSE(t)〉 〈ψSE(t)|] (6)

=
∑
m

〈χm|ψSE(t)〉〈ψSE(t)|χm〉

= |α|2|0〉〈0|+ |β|2|1〉〈1|+ α∗β|1〉〈0|〈E0|E1〉+ αβ∗|0〉〈1|〈E1|E0〉 ,
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using the completeness relation
∑

m |χm〉〈χm| = 1̂. The last line indicates that when
〈E0|E1〉 = 0, i.e. the two states of the environment are fully distinguishable, the co-
herence of the state disappears. If on the contrary, the 〈E0|E1〉 ≈ 1, the coherence is
preserved. This is an example of “which-path” detection of the state of the qubit by
the state of the environment (even if we don’t measure it...).

Generally speaking, 〈E0(t)|E1(t)〉 → 0 in a time scale which decreases rapidly with
the size of the environment. To see that, let us introduce a model proposed by Zurek,
that will be very useful when discussing the emergence of classical states in the next
section. The environment consists of an ensemble of N qubits k coupled to the qubit S
by an Ising-like Hamiltonian:

HSE =
N∑
k=1

~gkσ̂z ⊗ σ̂zk . (7)

Starting from the state of S + E:

|ψSE(0)〉 = (α |0〉+ β |1〉)⊗
N∏
k=1

(αk |0〉k + βk |1〉k) , (8)

the state at a later time becomes

|ψSE(t)〉 = exp[−iHSE

~
t] |ψSE(0)〉 (9)

= α |0〉 ⊗ |E0(t)〉+ β |1〉 ⊗ |E1(t)〉 (10)

with the two states of the environment being:

|E0(t)〉 =
N∏
k=1

(αke
−igkt |0〉k+βke

igkt |1〉k) , |E1(t)〉 =
N∏
k=1

(αke
igkt |0〉k+βke

−igkt |1〉k) . (11)

The overlap between these two states thus evolves as:

〈E0(t)|E1(t)〉 =
N∏
k=1

(|αk|2e2igkt + |βk|2e−2igkt) . (12)

To get an idea of how quickly this terms goes to 0, let us take αk = βk = 1/
√

2, and
gk = g for all k. Then

〈E0(t)|E1(t)〉 = cos(2gt)N ≈ e−2Ng2t2 for t→ 0 . (13)

Hence in a time Tc ∼ 1/(2
√
Ng), the coherence between the qubit states |0〉 and |1〉

disappear, and the larger the reservoir the faster the decoherence. The recurrence time,
i.e. the time after which the overlap goes back to 1, is Tr = π/(2g): it can be extremely
long if the coupling S − E, g, is small. If, moreover, the gk’s are random, and so are
the αk’s and βk’s, the recurrence time can easily exceed the age of the universe for an
environment consisting of a macroscopic number of qubits...

Interestingly, with the choice of coupling Hamiltonian (7), had we taken αk = 1 (thus
βk = 0), we would have obtained |〈E0(t)|E1(t)〉| = 1 at all time: the coherence would
have never disappeared!
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3 Measurement and classicality: pointer states

We now have everything in place to understand a bit more in detail the measurement
process and why classical states emerge from it.

We consider again a system S, a qubit, coupled now to a measuring device M (also
called a meter). The goal of a measurement is to acquire information about the system
by looking at the measuring device: the measurement process thus require an interaction
between S and M . Initially, S −M is prepared in the state:

|ψSM(0)〉 = (α |0〉+ β |1〉)⊗ |χ〉M . (14)

During the measuring process, S and M get entangled:

|ψSM(t)〉 = α |0〉 ⊗ |χ0〉M + β |1〉 ⊗ |χ1〉M . (15)

For the measurement to be successful, we should be able to distinguish between the two
states of the measuring device, in order to obtain a “which-path” information. As we
discussed in Sec.2, this require 〈χ0|χ1〉 = 0. We will call this two states of the meter
the pointer states: they could be two positions of the needle of a voltmeter, two distinct
values of a photocurrent... In any case, we know from our daily experience that these
pointer states are “classical”.

Tracing over the pointer states of the meter, the density matrix of the qubit is thus
ρ̂S = |α|2|0〉〈0| + |β|2|1〉〈1|. Everything seems to look good: we obtain a statistical
mixture of |0〉 and |1〉. But let us now introduce the states |±〉S = (|0〉 ± |1〉)/

√
2 and

|χ±〉M = (α |χ0〉M ± β |χ1〉M). The state (15) can be rewritten:

|ψSM(t)〉 =
1√
2
|+〉S ⊗ |χ+〉M +

1√
2
|−〉S ⊗ |χ−〉M . (16)

Taking for example α = β = 1/
√

2, we find 〈χ+|χ−〉 = 0 and the density matrix of
the qubit is diagonal again in the |±〉S basis..., and that would be true for any other
choice of orthogonal basis! This problem is called the basis ambiguity: using again the
language of a Stern-Gerlach experiment this means that for a spin in a superposition of
|↑〉 + |↓〉 we should be able to observe a superposition of two spots. In the same way,
an old-fashion voltmeter with a needle could be seen pointing in two directions at the
same time...

To solve this basis ambiguity, we must recognize the fact that the measuring device
itself is coupled to an environment. This may not be totally surprising: after all, if
we imagine a voltmeter with a needle pointing Left when a qubit is in state |0〉 and
Right when it is in |1〉, and if we assume that the system S − M is isolated, S and
M will exchange coherently their energy. The needle will oscillate between its Left and
Right positions while the qubit oscillates between |0〉 and |1〉... Something must damp
the motion of the needle so that it points in a direction from which you can extract
some information about the state of the qubit. We therefore need to consider in the
measurement process three partners: the system E, the measuring device M , and an
environment E coupled to the meter M .

Initially, the state of S −M − E is:

|ψSME(0)〉 = (α |0〉+ β |1〉)S ⊗ |χ〉M ⊗ |E〉E . (17)
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We now decompose the measurement process in two steps. In the first one, called a
pre-measurement, S and M get entangled:

|ψSME〉 = (α |0〉S ⊗ |χ0〉M + β |1〉S ⊗ |χ1〉M)⊗ |E〉E . (18)

In a second step, the interaction between the environment and M leads to a state:

|ψSME〉 = α |0〉S ⊗ |χ0〉M ⊗ |E0〉E + β |1〉S ⊗ |χ1〉M ⊗ |E1〉E . (19)

We can now calculate the reduced density matrix of the S −M system:

ρ̂SM = TrE[|ψSME〉 〈ψSME|] (20)

= |α|2|0〉〈0|S ⊗ |χ0〉〈χ0|M + |β|2|1〉〈1|S ⊗ |χ1〉〈χ1|M
+αβ∗〈E1|E0〉|0〉〈1|S〈⊗|χ0〉〈χ1|M + h.c. .

Again, the coherence depends on the overlap between two states of the environment.
To move one, we have to specify a particular form of the M − E coupling. Here

again we will assume that the environment consists of N qubits k, coupled to the meter
M . Let us take an Ising-like coupling analogous to the one of Eq. (7):

HME = (|χ0〉〈χ0| − |χ1〉〈χ1|)M ⊗
N∑
k=1

~gkσ̂zk . (21)

The calculation is the same as the one leading to Eq. (12). We thus conclude that for a
large environment (N � 1), 〈E0|E1〉 → 0 in a very short amount of time, and therefore
the coherence between the meter and the qubit disappears: we are left with a classical
mixture where the qubit is in |0〉, the meter being in |χ0〉 or the qubit is in |1〉 with the
meter in |χ1〉. Hence the coupling to the environment has selected the pointer states
(classical states) as the ones that lead to a mixed states between them and the state of
the qubit.

What is the magic? There is none. We have simply taken for the M − E coupling
Hamiltonian a form diagonal in the pointer states: starting from an initial factorized
state |χ0〉M ⊗ |E〉 or |χ1〉M ⊗ |E〉, we obtain

exp[−iHME

~
t] |χ0,1〉M ⊗ |E〉 = |χ0,1〉M ⊗ |E0,1(t)〉 . (22)

The coupling does not lead to any entanglement between the meter and the environment!
Things would have been different had we started from the states |χ±〉M ⊗ |E〉 (for
example a superposition of two spots in the Stern and Gerlach experiment, or the
state |Dead〉 ± |Alive〉 of the Cat). Then, the coupling to the environment would have
produced an entangled state of the meter and the environment:

exp[−iHME

~
t] |χ±〉M ⊗ |E〉 =

1√
2

(|χ0〉M ⊗ |E0(t)〉 ± |χ1〉M ⊗ |E1(t)〉) . (23)

And we know that such entangled state decoheres very rapidly, as 〈E0(t)|E1(t)〉 → 0!
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One may argue that the reason why we find that the pointer (classical) states con-
stitute the privileged basis selected by the environment results from the particular form
of the meter-environment Hamiltonian we have chosen. This is of course true... But we
have learned something very important: the pointer states are the ones that do not get
entangled with the environment, i.e. that are robust to decoherence. Now, in a given
situation for which we know what are the pointer states, simply because they are the
states of our measuring apparatus in a given experiment, we can construct a coupling
HME adapted to the situation and then see whether it can correspond to a physically
possible meter-environment coupling...

There doesn’t seem to exist general rule to find HME. However, one sufficient condi-
tion is too look for Hamiltonian that commute with all the projectors P̂

(M)
m = |χm〉〈χm|

of the pointer states {|χm〉} of the meter:

[HME, P̂
(M)
m ] = 0 ∀ m . (24)

As any observable ÔM of the meter is of the form ÔM =
∑

m omP̂
(M)
m , the condition

(24) is equivalent to [HME, ÔM ] = 0. As we saw in Lecture 5, this is the condition of a
quantum non-demolition measurement of the meter by the environment!

4 Coherent state as pointer states and the decoher-

ence of Schrödinger cats

Let us know reverse the problem and assume that we have guessed from practical con-
siderations a given meter-environment coupling. Can we find the corresponding pointer
states? Here again there is no general rule and the task has been successfully achieved
only for a limited number of models. A general approach consists in studying the time
evolution of a large set of pure states and select those that remain pure, or at least that
get weakly entangled with the environment. This method is called the predictability
sieve. In practice, one solves the Lindblad equation of the model (most often numer-
ically) for a variety of initial pure states. One then studies the time evolution of the
purity Tr[ρ̂2] or the von Neumann entropy, and post-selects the states for which these
quantities do not evolve or evolve the least.

A special case where one can explicitly find the pointer states is the damped harmonic
oscillator. It can be a real physical oscillator as a particle in a quadratic potential or
a nano-resonator, but also a mode of a quantized electromagnetic field in a cavity (see
Lecture 2). The damping comes from a coupling to an environment: for the cavity
this is the loss through the mirror of the cavites; for a mechanical oscillator it can be
some friction. Let us define the damping rate κ as the rate of energy loss, so that
d〈E〉/dt = −κ〈E〉. As we saw at the end of Lecture 6, assuming that the environment
is in its ground state, only one quantum channel contributes to the damping, with the
jump operator L̂− =

√
κâ. The damping part of the Lindblad equation is:

dρ̂

dt
= L[ρ̂] =

κ

2

(
2âρ̂â† − ρ̂â†â− â†âρ̂

)
. (25)
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We want to find the pointer states associated to this equation. It turns out that the
coherent states:

|α(t)〉 = e−|α(t)|2/2
∞∑
n=0

α(t)n√
n!
|n〉 , (26)

with α(t) = α exp[−κt/2] are such states. This can be checked directly by showing that
the density matrix ρ̂(t) = |α(t)〉〈α(t)| is solution of the equation (25). To do so, write

d |α(t)〉
dt

= −1

2

d|α(t)|2

dt
|α〉+ e−|α(t)|2/2dα(t)

dt

∑
n

nαn−1(t)√
n!

|n〉

=
κ

2
|α(t)|2 |α〉 − κ

2
â†â |α〉 . (27)

This leads to

d|α(t)〉〈α(t)|
dt

= κ|α(t)|2|α(t)〉〈α(t)| − κ

2
â†â|α(t)〉〈α(t)| − κ

2
|α(t)〉〈α(t)|â†â . (28)

As |α|2|α〉〈α| = α|α〉〈α|α∗ = â|α〉〈α|â†, we obtain the Lindblad equation (25) applied
to ρ̂(t) = |α(t)〉〈α(t)|. This shows that a coherent state remains coherent during the
damping, indicating that it does not get entangled with the environment: |α〉S ⊗ |E〉E
evolves into |α(t)〉S⊗|E(t)〉E. This is consistent with the idea that coherent states are the
quantum states closest to classical states. However, this does not mean that a coherent
state is unaffected by the environment: the coupling with it induces an exponential
relaxation of the normal variable α(t) and, thus of the oscillations.

A superposition of pointer states is however in general not a pointer state. Let us
consider for example the superposition of two coherent states |α+〉 and |α−〉

|ψ(0)〉 =
|α+〉+ |α−〉√

2
[
1 + Re(〈α+|α−〉)

] , (29)

For |α±| � 1 and |α+ − α−| � 1, it is a Schrödinger cat state, i.e. a superposition of
distinct macroscopic states. The correction to the normalization factor is unimportant
here because (i) |〈α+ |α−〉 | = exp(−|α+ − α−|2/2)� 1 and, (ii) the Lindblad equation
preserves the trace, i.e. the normalization. We can thus use the (unnormalized) initial
density matrix

ρ̃(0) =
1

2

[
|α+〉〈α+|+ |α−〉〈α−|+ |α+〉〈α−|+ |α−〉〈α+|

]
. (30)

The states |α+〉 and |α−〉 being quasi-orthogonal (for |α+ − α−| � 1), the first two
terms can be interpreted as “populations” and the last two as ‘coherences” in the quasi-
basis made of the states |α±〉. The Lindblad equation being linear, each term evolves
independently of the others.

|α±〉〈α±| → |α±(t)〉〈α±(t)| with α±(t) = α±e
−κt/2 , (31)

since each coherent state is a solution of the Lindblad equation. In contrast, the coher-
ence terms |α+(t)〉〈α−(t)| and |α−(t)〉〈α+(t)| are not solutions of the Lindblad equation.
A calculation analogous to the one leading to Eq. (28) gives

d|α+〉〈α−|
dt

= L
(
|α+〉〈α−|

)
+
κ

2

(
|α+|2 + |α−|2 − 2α+α

∗
−
)
|α+〉〈α−| , (32)
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where L is the Lindbladian defined at Eq. (25). The solution of the Lindblad equation
for this coherence term is the evolution |α+〉〈α−| → e−Φ(t)|α+(t)〉〈α−(t)|, with

Φ(t) =
1

2

[
|α+|2 + |α−|2 − 2α+α

∗
−

] (
1− e−κt

)
. (33)

Taking α+ = −α− = α (real and positive), we find Φ(t) = 2α2 (1− e−κt). The solution
of the Lindblad equation with a superposition of coherent states as an initial state,
Eq. (29), is thus

ρ̃(t) =
1

2

[
|α(t)〉〈α(t)|+ |−α(t)〉〈−α(t)|+e−Φ(t)

(
|α(t)〉〈−α(t)|+ |−α(t)〉〈α(t)|

)]
. (34)

This dynamics is characterized by three different time scales. First, the population terms
decay towards the ground state |0〉〈0| in a time τdecay = 1/κ, as in the case of a single
coherent state. Second, the two coherent states start to merge after a typical time such
that |α+(t) − α−(t)| ' 1, leading to τmerge = ln(2α)/κ. This time is larger than τdecay

for α� 1. Third, the coherence terms decrease much faster, as their amplitude is:∣∣e−Φ(t)
∣∣ = exp

[
−2α2

(
1− e−κt

)]
. (35)

At short times, Φ(t) ≈ 2α2κt, and the amplitude of the coherence terms decays exponen-
tially. At long time, t� 1/κ, it saturates to exp (−2α2)� 1. The coherence terms thus
become negligible in a time τdecoh = 1/(2ακ) � 1/κ. We recover here again the usual
conclusion that the larger a cat, the faster it decoheres towards a statistical mixture
of its two classical components. All these predictions have been tested experimentally
using a setup similar to the one we discussed in Lecture 5 about QND measurements [6]:
a coherent state of an electromagnetic field is prepared in a superconducting microwave
cavity. Sending a Rydberg atom with resonant frequency different from the cavity re-
alizes a dispersive coupling between atoms and field and prepares a Schrödinger cat of
the form |αeiφ〉 + |αe−iφ〉. After some time a second atom is sent through the cavity
to probe the field. In this way, one extracts a quantity proportional to Re[e−Φ(t)]. The
results of the experiment are shown in Fig. 2, together with the predictions of Eq. (33).

5 Summary and conclusion

The decoherence program that we have outlined above on specific examples is fully
contained into the formalism of quantum physics: it thus does not bring any new ideas. It
simply emphasizes the consequences of considering that a quantum system is necessarily
coupled to an outside world (as long as we don’t consider for the system the universe
as a whole...): the most important one is the entanglement between the system and the
environment that, from the point of view of the system, looks like a loss of coherence
in a very short time set by the size of the environment. The formalism also shows that
“large” quantum systems decohere faster than “small” ones.

The second important aspect that decoherence highlights is the fact that classical
states are the ones stable against decoherence: this is almost a tautological statement,
as precisely the state that we observe in our daily life are the ones that survived de-
coherence... There thus seems to exist an environment induced selection (one speaks
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Figure 2: Decoherence of a Schrödinger cat state of the form |αeiφ〉 + |αe−iφ〉. The
cat is prepared in a microwave superconducting cavity with 1/κ = 160µs, containing
|α|2 ≈ 3.5 photons. The state of the field is measured by sending Rydberg atoms through
the cavity using a method similar to the one explained in Lecture 5. The figure shows a
signal proportional to the coherence between the two components of the cat Re[e−Φ(t)].
The solid line is the prediction for Φ(t) using Eq. (33). Figures from [6].

of einselection) of stable preferred states, the classical ones. Sometimes one speaks of
“Quantum Darwinism”...

Nevertheless, decoherence does not explain why, when we have our diagonal density
matrix S −M , we obtain only one of the possible results, and why this one...
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