Master QLMN Antoine Browaeys
Physics of Quantum Information antoine.browaeys@Qinstitutoptique.fr

Lecture 8: Stochastic wave functions
November 7% 2025

In the last lectures related to open quantum systems we talked a lot about “quantum
jumps” associated to transitions between the states in the reservoir, concomitant with
jumps between the states of the system, described by the L., operators.

As a matter of fact the idea of jumps appeared very early in the history of quantum
physics: Bohr introduced it to describe the sudden decay of an atom from one trajectory
of the electron around the nucleus to a lower one. He postulated that an atom only emits
light during the jump, contrarily to the prediction of classical electromagnetism where
the electron should continuously radiate. This jump associated to the emission of light
is also the way spontaneous emission in an atom was presented to you in highschool.
However in the mind of many physicists in the early days of quantum mechanics, this
was essentially a convenient image to understand what is going on but of little interest in
practice as, according to what Schrodinger wrote in 1952, “...we are not experimenting
with single particles...”. Indeed all experiments until around 1980 were performed on
large collections of atoms and one only had access to average behaviors. The density
operator was initially introduced to describe this average for a system coupled to a
reservoir, without having to think about the behavior of each individual component of
the system.

In the late 1970’s, the situation changed after Hans Dehmelt was able to trap a
single electron in 1973, and, together with P. Toscheck, a single ion in 1980. The
question of the evolution of a single quantum object coupled to a reservoir (for example
the electromagnetic field surrounding it) came back on the scene. Today, in the context
of the “second quantum revolution” that we described in the first lecture and which
relies largely on the possibility to manipulate individual quantum objects, calculating
their evolution is central.

Before getting to the formalism, let us show that this idea of quantum jumps is
fruitful. Consider a two-level atom with states |g) , |e), with a decay rate of the excited
state I'. We assume that the probability for the atom initially in |e) to decay during a
time dt is dp = I'dt. Importantly, we also assume that this probability is independent of
the time ¢, i.e. the system has no memory of its past (this is the Markov approximation
again...!). To calculate the probability P.(¢) that the atom is still in |e) after a time
t, we divide the interval [0,¢] into n steps of duration dt = ¢/n. For the atom to still
be in |e) at t, it must not have decayed between [0, dt], [dt, 2dt].... The probability to
not decay during an interval dt is 1 — dp, and is independent of time (Markov), hence:
P.(t) = (1 —dp)™ = (1 = T't/n)" — exp(—TIt) for n — oo. The picture is thus the
following: take an ensemble of N atoms, all prepared in |e). A particular atom stays in
le) until a given time when it jumps to |g). Each atom will do the transition at a different
time. If we record the number of atoms still in |e) for each interval [kdt, (k + 1)dt], the
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Figure 1: (a) Simplified three-level structure of the Bat ion used in the experiment of
Hans Dehmelt [Phys. Rev. Lett. 56, 2797 (1986)]. (b) Fluorescence emitted at 493 nm
as a function of time: when the lamp is turned on the atoms can be shelved in the state
len) where it does not emitted light. (c) Histogram of the dwell time in |e,), together
with an exponential fit to the data.

corresponding histogram approximates an exponential decay.

In 1986, three experiments observed quantum jumps using individual ions [1, 2, 3].
The principle of the experiments was the same for all, even if the exact atomic structure
was a bit different. The simplified level structure involves two transitions from the
ground state |g) (see Fig. 1): one couples to a state |e,) with a narrow transition
(decay rate I'y), the other coupled to |ey,) (decay rate I', > I'y). An incoherent light
continuously excites the |g) — |ep) transition and one monitors the fluorescence emitted
by the ion. At a given time, the experimentalists turn on a second incoherent light
tuned on the |g) — |e,) transition. They observed that the ion stops emitting light for
some time before it emits again. The interpretation consists in saying that when the
light on the narrow transition is on, the ion jumps from |g) to |e,) where it stays for a
duration ~ 1/I';,. The histogram of the durations during which the fluorescence if off
gives an exponential decay, with a rate [',. This experiment demonstrating the existence
of quantum jumps (that are now more than a simple image...) was a shock for many
physicists. Since then the formalism of stochastic wave function, which we will describe
in this lecture, has been developed to put all these on firm ground.

1 Stochastic wave function

The idea was developed theoretically in the late 1980’s by several physicists. The article
by J. Dalibard, Y. Castin and K. Moelmer in [4] is a masterpiece of pedagogy and
elegance and you are strongly encouraged to read it. In this work, the stochastic wave
function was introduced using the Wigner-Weisskopf method applied to an atom and
the surrounding vacuum field considered as a reservoir. Here we will start from the
Kraus formalism that we have developed in the previous lectures to explain the idea.

Consider a system S (e.g. a two-level atom) coupled to a reservoir R, described at
a time t by a separable state:

[Ysr(t)) = [¥s(t) @ [x0) (1)

with |xo) the state of the reservoir. We have learned in lecture 6 that the state at a



later time ¢t + dt is

[sr(t +di)) = Y [My(t, dt) [s(E)] @ |xm) (2)

m

where the |y,,)’s are various states of R, orthogonal to |xo), and the M,,(t,dt) are the
Kraus operators. We can single out the case where the state of the reservoir is unchanged
(“no click”) and the cases where a transition occurs (“detection of a click”):

[sr(t+dt)) = Mo [s(1))] ® |xo0) + D [Myn [5(0)] © [Xom) - (3)
m##0

Hence, the state of the system S conditioned on the absence of click (i.e. the reservoir
is unchanged) is:

My |s(t
st + dt)) = M , (4)
1Mo |15 (8))
while the state of S following a click that brings the reservoir into the state |x.mo) is
m t
[Ys(t + dt)) = M : (5)
[ My |10s(2)) ||

We now apply the Markov approximation: the Kraus operators only depend on the
time step dt: M, (t,dt) = M,,(dt). This also allows us to say that the system and
reservoir are not entangled at ¢, as implied in Eq. (1). We then use the expressions of
the operators seen in Lecture 6:

Mo(dt) =1 — +Hegdt with Hey = Hg — 5 %L;Lm : (6)
Myzo(dt) = LVt . (7)

The probability that a jump in the reservoir from |xo) to |x.m) occurs during dt is,
according to the rule on POVM given in Lecture 3:

= (Vs M} My, [bs) = (bs| LT, L [00s) dt . (8)

Hence the probability that a click occurs, i.e. a transition in R irrespective of its final
state, is dp = >, dpnm. Calling (¢s] Zmﬂ] T L |ts) = 7, the probability to get a
click during dt is dp vdt. After this jump occurs the reservoir relaxes to the state |xo)
in a very short time 7. (see Lecture 7), and one can assume for the following time step
dt again a separable S — R state: |[ggr(t + dt)) = |s(t + dt)) @ |xo)-

Let us now come back to the evolution of the state of the system when no detection



occurs. Using Eq. (6), we obtain:

1300 s () 12 = (s| VI Mo [ps) | (9)
= (sl (1 + £ Hlp dt)(1 — - He dt) [is) (10)
= (sl (1 + = (Hly — Her) dt) [4s) + O(dt?) (11)
= (Wl (1= £ Lo dt) [s) + O(dt?) (12)

m##0
= (s| (L =) M} ML) [ibs) + O(dt?) (13)

m#0
~ 1—dp. (14)

Hence, ‘

st + diyy = L et/ Bty (15)

v1—dp

Equation 15 calls for an important remark, which shows the subtlety of the approach.
Naively, one would have thought that the evolution of the system in the absence of
detection should be governed by a unitary evolution under Hg and not H.g:

st + dt)) oc (L —iHg/hdt) [{s(t)) . (16)

However, this is not the case. To understand this, consider a two-level atom in a state
[Ys(t)) = alg) + Ble) with a decay rate I' for |e). We assume the free hamiltonian
Hg = hwy |e) {e|. Then |g(t + dt)) = a|g) + e 0% |e). Hence the probability to find
the atom in |e) does not change as the time evolves, which is not compatible with the
idea that it may decay during dt. In fact, the absence of detection of a photon coming
from the atom as the time increases makes it more likely that the atom is found in its
ground state: no detection therefore implies a non hermitian evolution of the state!

2 Quantum trajectories

We are now equipped with the necessary ingredients to calculate the evolution of the
stochastic wave function as a function of time. We first split the interval between 0 and
t into time-steps dt = t/n. For each time step we calculate the probability dp = ~dt
to undergo a jump. We compare this probability to a random number r drawn from a
uniform distribution in [0, 1]. The procedure is then:

1. If r > dp, the wavefunction evolves according to

1 —iH.g/hdt

[¥s(t)) - (17)

2. If r < dp, the wavefunction undergoes a jump and the final state is [ts(t + dt)) =
L, [(t)) /+/dpm/dt with a probability dp,,/dp.
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Figure 2: (Left) Examples of quantum trajectories for an atom initially excited. (Right)
Average over 200 trajectories, together with the solution of the Bloch equation.

A particular sequence of choices for each step dt is called a quantum trajectory: it consists
in a succession of periods of continuous, coherent-like evolution of the wave function,
followed by jumps at random times.

Let us apply this procedure to the case of a single two-level atom driven by a laser
at frequency w with a Rabi frequency 2. There, in the rotating frame approximation,
Hs = —hAle)(e|+(h2/2) (01 +0_), with A = w—wy. As seen in Lecture 7, a single jump
operator L_ = /T o_ contributes, so that Heg = Hg — i(h['/2)0 0_ (0,0_ = |e){e]).
If we write the state of the atom as [15(t)) = a(t) |g) + B(t) |e), the case 1 corresponds
to the evolution:

(EEEIZED - %dp (—z‘lgdt 1+ (Z?iﬁg)dt) (gg;) . (18)

Here, the probability dp = (¢g| LT L_ [bg) dt = T|(e|ps)|?dt = T|B(¢)|? dt. Hence, when
no jump occurs, using /1 —dp ~ 1 — dp/2 and keeping only the first order terms in dt:

ot +dt) = (1 ; %dtwu)\?) o(t) i e (19)
Bt +dt) = (1 - %IW)IQ - iAdt) B(t) — i%a(t) : (20)

In the opposite case where a jump occurs, [g(t + dt)) = |g). The result of such a
simulation is shown in Fig. 2 for the case where 2 = 0, and the atom is initially in the
excited state (5(0) = 1). We also show the average over many trajectories, where we
recover the exponential decay.

Figure 3 presents the case of an atom driven by a laser, on resonance with the
transition (A = 0), switched on at t = 0. The trajectory consists of Rabi oscillations
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Figure 3: (a) Examples of quantum trajectories for an atom in |g) at t = 0, driven by
a resonant laser with Rabi frequency €. (b) Average over 1000 trajectories, together
with the solution of the Bloch equations. (c) Evolution of the atomic dipole (D™ (t)) o
Im[a(™ 3*(M)] associated to a quantum trajectory.

that are interrupted by jumps from |e) to |g) at random times. When averaging over
many trajectories, one recovers the solution of the Bloch equations for a two-level atom.

The stochastic wavefunction approach is not a new concept that we need to add to
quantum physics. It is simply a new, fruitful way of looking at the evolution of open
quantum systems. As an example of physical insight that it provides, consider again a
two-level atom driven by a laser (detuning A, Rabi frequency €2). The solution of the
steady-state solution for the coherences is:

.0 T/244A
ps = —71— .
0" T2 AT} Q224 1%/4

(21)

This expression predicts that at high intensity of the laser (€2 > T'), pf ~ 0 i.e. the
average atomic dipole (D) o p., ~ 0. This fact is not so obvious but the stochastic
wave function provides a nice interpretation: consider the evolution of the coherence
of the two-level atom o™ (¢)3*™(t) during a particular trajectory, as represented in
Fig. 3(c). It undergoes oscillations interrupted by jumps at random times, exactly as
in the classical description of an oscillating dipole undergoing random collisions which
dephase the dipole. Due to the random phase shift associated to each jump, the average
of the dipole is 0 and one recovers the result of the Bloch equations.



3 The Lindblad form recovered

We have seen in the last section that the average over many quantum trajectories repro-
duces the solution of the Bloch equations in the case of the two-level system (Fig. 2,3).
As a sanity check let us show that in the general case, the average over many different
quantum trajectories corresponding to different stochastic wave functions |1/ (¢)) leads
to the Lindblad equation for the average density operator of the system S:

= D7) with 00 = [0 () (6 ()] (22

For simplicity, we will do it on the case of a two level system with the excited state
having a decay rate I'. Then Hoy = Hg — i(hl'/2)o0o_. Consider first the evolution of
p™(t) from t to t + dt: during this time step, the system can either undergo a jump
(probability 1 — dp) or not (probability dp). If it does not undergo a jump the wave

function changes from [0 (t)) to [ (t + dt)) ~ (1 — iHegdt/R) [ (1)) //T— dp.
Otherwise [/ (t + dt)) = |g). Hence:

P+ dt) = (1—dp) ple) oyt + dt) + dp pliis (t + dt) (23)
= - Lo o ) L g1 ) 2

= () — < [Hsp™ (8) = " (1) H)dt (25)
Sl p ) + 9P (Noso Jdi £ T dtlg) o) gl - (26)

Remember that pl2 (t) = (e| p™ () |e), oy = |e) (g|, and o = |g) (e|. We then obtain:

dp™ 1

T He o (n)

™ pMgio ). (27)

(o4p™Mo_ —0r0o_p

no| M

Hence, when averaging over many trajectories:

1 r
dt == (N A > g Hs pl+ S (04po- —040_p—poio). (28)

We (of course...) recover the Lindblad form and can interpret the operator p as the
density operator of the system S.

One can also calculate the average value of any observable A: consider a trajectory
(n) corresponding to a wave function [ (t)). Calculate (A)™(t) = (™ (t)|Ajp™) (1)),
and (A)(t) =3, (A)™()/N, with N the number of trajectories.

4 Discussion of the method

Besides yielding a nice intuition about the time evolution of open many-body quantum
systems, the stochastic wave function is an important tool to calculate their dynamics.
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Think of an ensemble of N qubits interacting with each other. The density matrix has
22N coefficients. For N 2 25, solving the master equation consisting of 2%V /2 coupled
equations is not feasible on any computer today and in the foreseeable future. However
the stochastic wave function approach requires solving “only” 2V coupled equations,
of course at the price of averaging over many trajectories. In most cases, a number
N, =~ 1000—10000 of realizations is enough, and in any case does not grow exponentially
with the number of particles, hence providing a huge gain in the number of equations
to solve.
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