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State represented by a ket (vector state) 
in a Hilbert space

Quantum superposition and entanglement

Superposition of states,

Entanglement,

Isolated systems

Lecture 1 : Basic Laws of Quantum Physics

Evolution (out of measurements)

Schrödinger equation :

Evolution operator :

Quantum physics is based on a few number of basic principles. While most of the lectures pointed 
out that this formulation is insufficient to (almost) any practical purpose, all we did directly follows 
from these principles (none has been questioned, no additional principle).

∣ψ=α∣0 +β∣1 

∣Ψ =α∣0 A∣0 B+β∣1 A∣1 B

i ℏ
d∣ψ( t)

dt
=Ĥ (t )∣ψ( t)

∣ψ(t)=Û (t )∣ψ(0)

→ Unitary evolution (conserves norm and orthogonality, reversible)

Projective measurements

(spectral decomposition)𝒪̂=∑
j

𝒪 j 𝒫̂ j
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Lecture 1+ : Reformulating the Basic Laws of Quantum Physics

The basic principles, however, only apply to isolated systems. In spite of dramatic experimental 
progress, a quantum system is never perfectly isolated (coupling to even vacuum, manipulation, and 
measurement devices).

bath / reservoir / 
environment

system (S)

The basic principles only apply to the system coupled to its 
environment (bipartite system). This may imply a huge amount 
of entanglement

∣Ψ S⊗E=∑
n , m

cn , m∣n S⊗∣m E

This state lives in a huge Hilbert space with dimension                                                 .dim (ℰS)×dim (ℰE)≫dim (ℰS)
2

→ If, however, we focus on S, we may disregard E but this implies a reformulation of quantum            
     physics (from the point of view of S).

∣Ψ S⊗E=∑
m

cm∣ψm S⊗∣χm E
orthonormal 
basis

ρ̂S=∑m
|cm|

2∣ψm  〈 ψm∣→

State of S represented by a density matrix

normalized
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The density matrix of S can always be diagonalized

Quantum superpositions

Superposition of basis states appear in coherences,

Open systems

Lecture 1+ : Reformulating the Basic Laws of Quantum Physics

∣ψ=α∣0 +β∣1 

ρ̂S=∑n
Πn∣n  〈 n∣

classical-like randomness quantum randomness 
(upon measurement)

→ ρ̂S=[|α|2 αβ*

α*β |β|2 ]
Evolution (out of measurements)

Master equation (counterpart of the Schrödinger equation) :

Quantum map/operation/channel :

d ρ̂
dt

= 1
i ℏ

[ Ĥ (t) , ρ̂(t)]+ ℒ ' [ ρ̂(t )]

ρ̂(t)=∑α
M̂ α ρ̂(0) M̂α

†

→ Nonunitary evolution (conserves norm,              , but not the purity,           ; in general irreversible)Tr (ρ̂)=1 Tr (ρ̂2)

Average of an observable ⟨O ⟩=Tr (ρ̂Ô )
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Bloch sphere

Lecture 1+ : Reformulating the Basic Laws of Quantum Physics

z

x

y

∣ψ

∣0 

∣1 

θ ∣+ i 

∣- i  ∣+ 

∣- 

ρ̂

Any state of a qubit may be represented as a vector on/in the Bloch sphere, u⃗=⟨ ^⃗σ⟩

Bloch vector on the 
sphere,

Pure state :

∣ψ=cos (θ /2)∣0 +sin(θ/2)ei φ∣1 

|⃗u|=1

Two orthogonal vector 
states (kets) are 
represented by opposite 
Bloch vectors

Bloch vector inside the 
sphere,

Mixed state :

|⃗u|⩽1

Purity :

u⃗=Tr (ρ̂ ^⃗σ )

Tr (ρ̂2)=
1+|⃗u|2

2

φ

Any single-qubit unitary operation (gate) is represented by a rotation on the Bloch sphere (     is 
conserved). For a time-independent Hamiltonian, it yields Rabi oscillations.

|⃗u|
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Lecture 2 : Physical Implementation and Manipulation of Qubits

Implementation and single-qubit operations

Qubits can be realized by any two-state system. Driving by a classical oscillating field close to 
resonance allows us to perform single-qubit operations (Rabi oscillations). Coupling to quantized 
harmonic oscillators yields a universal Hamiltonian, aka the Jaynes-Cummings model.

∣e   / ∣ 

∣g   / ∣ 

ℏ ωdrive

ℏ δ
∣1 

∣0 

ℏ ωqubit

− ^⃗D⋅E⃗0 cos (ω t )

− ^⃗μ⋅B⃗0 cos (ω t)or or ...

single-mode 
classical driving

- atom with 2 « priviledged » states
- particle in a two-well potential
- photons in two modes (k, s)
- real spins

In the rotating frame and within the quasi-resonant approximation (aka RWA), it yields the effective 
Hamiltonian

~H eff=− ℏ δ
2

σ̂ z +
ℏΩ
2

σ̂ x

→ Equivalent to a spin in a controlled magnetic field ; May implement any rotation on the Bloch sphere

Physical qubits
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Lecture 2 : Physical Implementation and Manipulation of Qubits

Coupling the qubit to a quantized mode

∣1 

∣0 
ℏ ωqubit

− ^⃗D⋅^⃗E

qubit-HO coupling

It yields the Jaynes-Cummings Hamiltonian Ĥ eff=−
ℏ ωqubit

2
σ̂ z+ℏ ωHO(â† â+1/2)+ℏΩ(σ̂++σ̂ -)(â+ â†)

or ...

Ĥ eff≃−
ℏ ωqubit

2
σ̂ z+ℏ ωHO(â† â+1/2)+ℏΩ(σ̂+ â+σ̂ - â

†)

ℏ ωHO

● Atom – radiation field in vaccum
● Atom – cavity mode
● Ion – vibration mode
● Superconducting circuit – wave guide

● For the h.o. in a strong coherent state, one recovers the previous case
● For the h.o. in a number state, one find a 2-qubit coupling, 
● For a qubit coupled to a continuum of modes (continuum of h.o.), one finds spontaneous emission

∣e ⊗∣n         ∣g ⊗∣n+1 
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Lecture 3 : Quantum Entanglement I

Although entanglement is ubiquitous, it is very difficult to demonstrate it unambiguously (sublte 
nonclassical correlation). The demonstration of the violation of Bell’s inequalities has shown that 
quantum physics is nonlocal and closed the Bohr-Einstein debate.
Moreover, entanglement is a resource to perform tasks that are
impossible at the classical level.

Violation of Bell’s inequalities
Review by A. Aspect, Physics 8, 123 (2015)

Quantum teleportation
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Lecture 4 : Quantum Entanglement II

Entanglement is a pivotal resource for the development of quantum technologies. It reveals in the 
Schmidt decomposition of a bipartite state and can be quantified by the purity and/or the entanglement 
entropies. It can be measured in some simple systems but it remains a tour de force.

Density matrix

Hermitian, nonnegative (                 ), unit trace

Notion of partial trace : ρ̂S=TrE(ρ̂SE)=∑m E 〈 m∣ρ̂SE∣m E with               an orthonormal basis of E.{∣m  , m}

Quantum tomography

ρ̂S=[ρ00 ρ01
ρ10 ρ11 ]

The density matrix may be reconstructed using repeated measurements

Measurements in the computation basis yields the populations

To measure the coherences, measure in a different basis 
(or rotate the system’s state before measuring in the 
computation basis)

〈 ϕ∣ρ̂S∣ϕ ⟩≥0
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Lecture 4 : Quantum Entanglement II

Schmidt decomposition

Any state of a bipartite system may be written as

∣Ψ SE= ∑
1⩽n⩽r

√λn∣un S⊗∣χn E where both               and               form orthonormal sets{∣un  , n}{∣un  , n} {∣χn  ,n }

The Schmidt decomposition is not unique but the Schmidt rank r and spectrum are

The density matrix then reads as ρ̂S=∑1⩽n⩽r
λn∣un  〈un∣

How to find the Schmidt decomposition ?

(i) In some (rare) cases, it is obvious…

(ii) Otherwise,

- Compute the reduced density matrix of S (or E) : 

- Diagonalize it :                                      (case study of a qubit, 2-dimensional space)

ρ̂S=TrE (∣Ψ  〈 Ψ∣)

ρ̂S=ρu∣u  〈 u∣+ρv∣v  〈 v∣

- Rewrite           in the orthonormal basis               :{∣u  ,∣v }∣Ψ SE ∣Ψ SE=α∣u S⊗∣χu E+β∣v S⊗∣χv E

→ The states          and          are necessarily orthogonal (Schmidt form)∣χu E ∣χv E
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Lecture 4 : Quantum Entanglement II

S vN=−Tr [ρ̂ log (ρ̂)]

Sα=
1

1−α log [ Tr(ρ̂α)]

Entanglement entropies

0.0 0.2 0.4 0.6 0.8 1.0
P1 = 1 − P2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

S n Rényi, n≃ 0
Rényi, n=0.1
Rényi, n=0.5
von ≃eumann
Rényi, n=2
Rényi, n=10
Rényi, n= ∞

von Neumann entropy

Rényi entropies

Entanglement entropies (purity, a=2) have been measured in ultracold atoms and trapped ions 
but it remains a challenge.

The degree of entanglement may be quantified by the entanglement entropies

Sα

P1=1−P0
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Lecture 5 : Quantum Measurement Theory

Pm=|M̂ m∣ψ|2

∣Ψ∣m ' =
M̂ m∣ψ

|M̂ m∣ψ|

ρ̂ '=∑m
M̂ m∣ψ〈 ψ∣M̂ m

†

Probability

Conditional after-measurement state

State after an unread measurement

Pm=Tr ( M̂ m ρ̂ M̂ m
† )

ρ̂∣m '=
M̂ m ρ̂ M̂ m

†

Tr ( M̂ m ρ̂ M̂ m
† )

ρ̂ '=∑m
M̂ mρ̂ M̂ m

†

Pure state Mixed state

From PVMs to POVMs

Projective measurements are insufficient to describe most measurements realized in the context of 
quantum technologies. The most general measurement processes are described by POVMs.

POVMs are found by coupling the system S to a meter M and then performing a PVM on M :

∣Ψ '  S⊗ M=Û S⊗M∣ψS⊗∣0 M=∑
m

( M̂ m∣ψS )⊗∣m M where the       ’s form a (orthonormal) measurement basis of M.∣m 

As regards the state of S, a POVM is described by

The unitarity of                  
implies the completeness 
relation

Û S⊗ M

∑
n

M̂ m
† M̂ m=1̂

The      ’s are the Kraus 
operators (m is the result 
of a POVM and   
describes the evolution of 
S conditional to m.

M̂ m

M̂ m
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Lecture 5 : Quantum Measurement Theory

Projective measurement (PVMs) are special cases of generalized measurements (POVMs). They 
correspond to the case where the Kraus operators        are projections on mutually orthogonal spaces.M̂ m

Generalized measurements are pivotal :

Describe realistic measurements (example of imperfect QND measurements, see Homework)

Can outperform PVM measurements (although each Kraus operator yields partial information on the state 
of S, one may use many more Kraus operators than projectors, see Homework).

Û

∣χn 

∣ψS=∑n
cn∣n 

∣χ A=∣0 

∣Ψ =∑n
cn∣n ⊗∣0 A ∣Ψ =∑n

cn∣n ⊗∣χn A 

∣χ3 A

∣χ2 A

∣χ1 A

∣3  S

∣2 S

∣1 S

Quantum non demolition (QND) measurements
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ρ̂S(0)⊗ρ̂E(0)

Lecture 6 : Open Quantum Systems I

Kraus operator-sum approach

bath / reservoir / 
environment (E)

system (S)

Evolution of the system’s state coupled to its environment

initial state

unitary evolution of S-E

The dynamics of a system S coupled to its environment E is described by a quantum map. It takes the 
universal Kraus form, which may be interpreted as environment-induced jumps of the system’s state. 
In the case where the environment is a bath, characterized by fast relaxation, it yields the differential 
Lindblad equation upon the Markov approximation.

Û (t )ρ̂S(0)⊗ρ̂E(0)Û (t)†ρ̂S(t )=∑
m

E〈 χm∣Û ( t)ρ̂S (0)⊗ρ̂E (0)Û (t)†∣χm E

partial trace over E

It yields ρ̂S(t )=∑
m, n

M̂ m,n( t)ρ̂S (0) M̂ m,n (t)† with ∑
m,n

M̂ m ,n(t )† M̂ m, n(t )=1 and M̂ m, n=√ρE ,n(0)M̂ m∣n

The operator sum formula has a straightforward interpretation

ρ̂S( t)=∑
m ,n

ρE ,n(0)×Pm∣n( t)×
M̂ m∣n(t) ρ̂S(0)M̂ m∣n( t)†

TrS [ M̂ m∣n (t) ρ̂S(0)M̂ m∣n(t )† ] S

E
∣n ⟩

∣m ⟩

∣ψ⟩

M̂ m∣n∣ψ ⟩



15
15

Lecture 6 : Open Quantum Systems I

Kraus theorem
The operator-sum formula is not unique and can always be 
written as ρ̂S(t )= ∑

0⩽α<dim (𝓔 S )2

M̂ α (t) ρ̂S (0) M̂ α( t)†

It may be interpreted as the action of a fictitious/effective environment 
subjected to quantum jumps from a reference state to at most                 states.dim (𝓔 S)

2

Lindblad equation
When the system S is coupled to a bath (large system with a huge number of degrees of freedom), 
the latter relaxes very rapidely to an equilibrium state and looses the memory of previous jumps 
(Markov process). The dynamics of S is then equivalent to a series of uncorrelated jumps induced by 
the bath, always in the same reference state. The derivation yields

d ρ̂S

dt
= 1

i ℏ
[ Ĥ , ρ̂S]+ ∑

1⩽α<dim (퓔S)
2
{L̂α ρ̂S L̂α

† −1
2

ρ̂S L̂α
† L̂α−1

2
L̂α

† L̂α ρ̂S}
There are many applications (damped harmonic oscillator, optical Bloch equations, ….)

S

E
∣0 ⟩

∣α ⟩

∣ψ⟩

M̂ α∣ψ⟩
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Lecture 7 : Open Quantum Systems II

Optical Bloch equations

The quantum master equation can be used to describe a variety of open systems, irrespective to the 
details of the system-bath coupling, and the general form of the Lindblad operators guessed from 
elementary processes. One may alternatively derive it explicitely from a microscopic approach and 
get exact expressions of the Lindblad operators.

d ρ̂
dt

= 1
i ℏ [ Ĥ A+V̂ AL(t) , ρ̂ ]+Γ (σ̂ - ρ̂σ̂+−

1
2

ρ̂ σ̂+ σ̂ -−
1
2

σ̂+ σ̂- ρ̂)

Describe the coupling of an atom to a (classical) laser field and 
the quantized radiation field (assumed in the vacuum)

Derivation of the quantum master equation

(i) Write the exact unitary evolution of the system and the bath 

(ii) Restrict to second order in the system-bath coupling (weak-coupling, Born approximation)

(iii) Assume fast relaxation of the bath degrees of freedom and neglect correlations between the      
       system and bath states (Markov approximation)

→ Spontaneous emission, damped Rabi oscillations
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Lecture 8 : Stochastic Wavefunctions 

The dynamics of an open quantum system, as described by the quantum master equation, is equivalent 
to a stochastic-wavefunction approach. The latter describes the dynamics of individual wavefunctions, 
made of a series of coherent-like (continuous) trajectories interrupted by quantum jumps. Each jump 
is equivalent to a read measurement by the bath. Averaging over all possible outcomes of these 
measurements, one recovers the quantum master equation (equivalent to a series of unread 
measurements).

Stochastic-wave approach simulating the 
optical Bloch equations

Quantum jumps are a physical 
reality (first observed in the 
fluorescence of individual 
trapped ions)
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Lecture 9 : Decoherence

Decoherence is the phenomenon by which quantum superpositions disappear in favor of classical 
states. It is due to the coupling of the system with its environment, which encompasses a huge number 
of inaccessible and uncontrolled states, by inducing a strongly entangled state. The state of the 
system, initially pure, becomes a statistical mixture. The classical states are the pointer states. Pointer 
states are protected against decoherence. In contrast, superpositions of pointer states are generally not 
pointer states, which explains the disappearance of their mutual coherence.
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Lecture 9 : Decoherence

Deléglise et al., Reconstruction of non-classical cavity field states with snapshots of their decoherence, 
Nature 455, 510-514 (2008)

W ( X , P)=∫dX ' 〈 X −X ' /2∣ρ̂∣X +X ' /2 ⟩e i X ' P

Measurement of the density matrix by a kind of tomography 
technique and representation via the Wigner function


