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Lecture 1 : Basic Laws of Quantum Physics

Quantum physics 1s based on a few number of basic principles. While most of the lectures pointed
out that this formulation 1s insufficient to (almost) any practical purpose, all we did directly follows
from these principles (none has been questioned, no additional principle).

Isolated systems

State represented by a ket (vector state) Projective measurements
in a Hilbert space

. O=) 0,2 ; (spectral decomposition)
Quantum superposition and entanglement i

Superposition of states, |y)=a|0)+p|1)
Entanglement, [W)=a[0),]0),+B|1),|1),

Evolution (out of measurements)

Schrodinger equation : ihcmg—imzﬁl(t)hp(t»

Evolution operator : |y(t))=0U(t)|y(0))

— Unitary evolution (conserves norm and orthogonality, reversible)



Lecture 1+ : Reformulating the Basic Laws of Quantum Physics

The basic principles, however, only apply to isolated systems. In spite of dramatic experimental
progress, a quantum system 1s never perfectly 1solated (coupling to even vacuum, manipulation, and
measurement devices).

The basic principles only apply to the system coupled to its |

environment (bipartite system). This may imply a huge amount - IR ecorvoir/

of entanglement &" fen ot
|W>S®E:Z Cn,m| n>S®|m>E

This state lives in a huge Hilbert space with dimension dim (& )X dim (& ,)> dim (& ).

— If, however, we focus on S, we may disregard E but this implies a reformulation of quantum
physics (from the point of view of S).

State of .S represented by a density matrix

|W>S®Ezzcm|wm>s®|xm>]~j - ﬁS:Zm|Cm|2|wm><wm|

e ™A orthonormal
normalized basis



Lecture 1+ : Reformulating the Basic Laws of Quantum Physics

Open systems

The density matrix of S can always be diagonalized

ﬁs:Zan|n><n|

classical-like randomness & A quantum randomness

(upon measurement)

Quantum superpositions

Superposition of basis states appear in coherences, |y)=a|0)+f|1) —  pg=

Evolution (out of measurements)

Master equation (counterpart of the Schrodinger equation) : Cle :L[ H(t),p(t)+ 2

Quantum map/operation/channel : p(t)=)  M,p(0)M]

>

— Nonunitary evolution (conserves norm, Tr(p)=1, but not the purity, Tr(p?) ; in general irreversible)

Average of an observable (@)=Tt(p 0|



Lecture 1+ : Reformulating the Basic Laws of Quantum Physics

Bloch sphere

Any state of a qubit may be represented as a vector on/in the Bloch sphere, #i=(5)

Pure state :

[y)=cos(0/2)|0)+sin(0/2)e’?|1)

Bloch vector on the
sphere, |u|=1

Two orthogonal vector
states (kets) are
represented by opposite
Bloch vectors

oz

A o)

Mixed state :
)

-

u=Tr(p

Qb

Bloch vector inside the

|

sphere, |u|<1
, o 1+[af
Purity : Tr(p’)= 2| |

Any single-qubit unitary operation (gate) is represented by a rotation on the Bloch sphere (i 1s
conserved). For a time-independent Hamiltonian, it yields Rabi oscillations.



Lecture 2 : Physical Implementation and Manipulation of Qubits

Qubits can be realized by any two-state system. Driving by a classical oscillating field close to
resonance allows us to perform single-qubit operations (Rabi1 oscillations). Coupling to quantized
harmonic oscillators yields a universal Hamiltonian, aka the Jaynes-Cummings model.

Implementation and single-qubit operations single-mode

Physical qubits 1) le) /|1) classical driving

- atom with 2 « priviledged » states L

P D e ; A < s
- particle 1n a two-well potential Daqubi <
. hwdrive S >
- photons 1n two modes (K, s) —D-E,cos(wt)
- real spins 0) lg) /]L) or —ii-Bycos(wt) Or ...

In the rotating frame and within the quasi-resonant approximation (aka RWA), it yields the effective
Hamiltonian N vS . HO .
EERAP

H 4=
— Equivalent to a spin 1n a controlled magnetic field ; May implement any rotation on the Bloch sphere
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Lecture 2 : Physical Implementation and Manipulation of Qubits

Coupling the qubit to a quantized mode

* Atom — radiation field in vaccum
—_— * Atom — cavity mode

qubit-HO coupling

* Ton — vibration mode

1 —_— : C .
v h (unbnf ﬁ * Superconducting circuit — wave guide
0) . .

-DE

A
or ... —l—thO

Ao
002%1t 5,+hwy(a'a+1/2)+nQ(6,+6 ) (a+a')

It yields the Jaynes-Cummings Hamiltonian H,,=—

fi .
- (“zqubltazmmHO(a*a+1/z)+h9(6+a+6-€1*)

* For the h.o. 1n a strong coherent state, one recovers the previous case
* For the h.o. in a number state, one find a 2-qubit coupling, |e)®|n) < |g)®|n+1)

* For a qubit coupled to a continuum of modes (continuum of h.o.), one finds spontaneous emission



Lecture 3 : Quantum Entanglement I

Although entanglement 1s ubiquitous, it 1s very difficult to demonstrate 1t unambiguously (sublte
nonclassical correlation). The demonstration of the violation of Bell’s inequalities has shown that
quantum physics 1s nonlocal and closed the Bohr-Einstein debate.

Moreover, entanglement 1s a resource to perform tasks that are
impossible at the classical level.

Quantum teleportation

Violation of Bell’s inequalities
Review by A. Aspect, Physics 8, 123 (2015)

fﬁ%’sriﬁglion

‘coincidence"




Lecture 4 : Quantum Entanglement II

Entanglement 1s a pivotal resource for the development of quantum technologies. It reveals 1n the
Schmidt decomposition of a bipartite state and can be quantified by the purity and/or the entanglement
entropies. It can be measured in some simple systems but it remains a four de force.

Density matrix
Hermitian, nonnegative ((¢|ps/¢)=0 ), unit trace

Notion of partial trace : ﬁS:TrE(f)SE):Zm (m|pg|/m), with {|m), m| an orthonormal basis of E.

Quantum tomography

The density matrix may be reconstructed using repeated measurements

Measurements in the computation basis yields the populations 0. P

p S:[ 00 01]
To measure the coherences, measure in a different basis P Pu
(or rotate the system’s state before measuring in the

computation basis)




Lecture 4 : Quantum Entanglement 11

Schmidt decomposition
Any state of a bipartite system may be written as

W= D, VR |u,)®|x,)e where both {|u),n} and {|y,),n] form orthonormal sets

1<n<r

The Schmidt decomposition 1s not unique but the Schmidt rank » and spectrum are

The density matrix then reads as ps= ZKN A Ju ) (u |

How to find the Schmidt decomposition ?
(1) In some (rare) cases, it is obvious...
(i1) Otherwise,
- Compute the reduced density matrix of S (or E) : ps=Tr|| W) (W],
- Diagonalize it : ps=p,|u)(u|+p,|v)(v| (case study of a qubit, 2-dimensional space)
- Rewrite | W) in the orthonormal basis {|u),|v)]: |[¥)g=au)®|%, e +B|V)s®|%, )

—> The states |X,)r and |X, )r are necessarily orthogonal (Schmidt form)
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Lecture 4 : Quantum Entanglement II

Entanglement entropies

The degree of entanglement may be quantified by the entanglement entropies

von Neumann entropy

Sw=—Tr[plog(p)]

Rényi entropies

1 N

Entanglement entropies (purity, a=2) have been measured in ultracold atoms and trapped 1ons

but it remains a challenge.
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Lecture 5 : Quantum Measurement Theory

Projective measurements are insufficient to describe most measurements realized in the context of
quantum technologies. The most general measurement processes are described by POVMs.

From PVMs to POVMs
POVMs are found by coupling the system S to a meter M and then performing a PVM on M :

W) o =U o | 9)s®]0),=D (Mm|1p>s)®|m>M where the |m)’s form a (orthonormal) measurement basis of M.

m

As regards the state of S, a POVM is described by The M ’s are the Kraus
Pure stat Mixed stat operators (m 1s the result
ure state ixed state of a POVM and M .
Brobabils P =IiL |y p T (1\7[ . MT) describes the evolution of
robabriity n =MW = M P M S conditional to m.
- W My l) . Mpi; o
Conditional after-measurement state W)= N —— The unitarity of U,,,,
M |y)] Te|M,pM)| .
implies the completeness
Arl . S oAt relation o
State after an unread measurement | f —ZmMm|1p><1p|Mm 0 —ZmMmpMm > MM =1
n 12



Lecture 5 : Quantum Measurement Theory

Projective measurement (PVMs) are special cases of generalized measurements (POVMs). They
correspond to the case where the Kraus operators M _are projections on mutually orthogonal spaces.

Generalized measurements are pivotal :

Describe realistic measurements (example of imperfect QND measurements, see Homework)

Can outperform PVM measurements (although each Kraus operator yields partial information on the state
of §, one may use many more Kraus operators than projectors, see Homework).

Quantum non demolition (QND) measurements

-ﬂ: i
_FE
| >S:Zn Cn|n> | >S . :
P — |1 u w l—’l/k. .

W)=2. c,ln)®l0), U W)=2. c,ln)®lx,),

50,=10) bl




Lecture 6 : Open Quantum Systems I

The dynamics of a system .S coupled to its environment £ is described by a quantum map. It takes the
universal Kraus form, which may be interpreted as environment-induced jumps of the system’s state.
In the case where the environment 1s a bath, characterized by fast relaxation, it yields the differential

Lindblad equation upon the Markov approximation.

Kraus operator-sum approach
Evolution of the system’s state coupled to its environment _,
em (S)

ﬁs(t)zz E<Xm|f](t)ﬁs(0)®ﬁE(0)U(I)T|Xm>E g

m

bath / reservoir /

A A A\ A
| initial state |

unitary evolution of S-E

partial trace over E

A A

Ityields pg(t)=2 M, (t)ps(0)M, (¢) with 2 M, (c)'M, (t)=1 and M, =Vp,,(0)M

The operator sum formula has a straightforward interpretation

5,(01=3 (0P, (1)




Lecture 6 : Open Quantum Systems I

Kraus theorem

The operator-sum formula is not unique and can always be

written as . - . ~
Pst)= 2 ZMOL(t)ps(O)MOL(t)T

0<a<dim(€ )

It may be interpreted as the action of a fictitious/effective environment
subjected to quantum jumps from a reference state to at most dim (& ) states.

Lindblad equation

When the system S is coupled to a bath (large system with a huge number of degrees of freedom),
the latter relaxes very rapidely to an equilibrium state and looses the memory of previous jumps
(Markov process). The dynamics of S 1s then equivalent to a series of uncorrelated jumps induced by
the bath, always in the same reference state. The derivation yields

A A 2 A 2 ].A 24+ 2 ]_A 2 A
H:ps]"' Z LapsLl_EpstLa_szLaps

1<a<dim(E,)

dbs _ 1,
dt inh

There are many applications (damped harmonic oscillator, optical Bloch equations, ....) "



Lecture 7 : Open Quantum Systems 11

The quantum master equation can be used to describe a variety of open systems, irrespective to the
details of the system-bath coupling, and the general form of the Lindblad operators guessed from
elementary processes. One may alternatively derive it explicitely from a microscopic approach and
get exact expressions of the Lindblad operators.

Optical Bloch equations

Describe the coupling of an atom to a (classical) laser field and
the quantized radiation field (assumed 1n the vacuum)

dp_1
dt ih

A

F1,+V (), p]+T 6_ﬁ6+—%ﬁé+6_—%o+6_f>

— Spontaneous emission, damped Rabi oscillations

Derivation of the quantum master equation
(1) Write the exact unitary evolution of the system and the bath

(1) Restrict to second order 1n the system-bath coupling (weak-coupling, Born approximation)

(111) Assume fast relaxation of the bath degrees of freedom and neglect correlations between the
system and bath states (Markov approximation)
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Lecture 8 : Stochastic Wavefunctions

The dynamics of an open quantum system, as described by the quantum master equation, 1s equivalent
to a stochastic-wavefunction approach. The latter describes the dynamics of individual wavefunctions,
made of a series of coherent-like (continuous) trajectories interrupted by quantum jumps. Each jump
1s equivalent to a read measurement by the bath. Averaging over all possible outcomes of these
measurements, one recovers the quantum master equation (equivalent to a series of unread

measurements).

Stochastic-wave approach simulating the
optical Bloch equations

—
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Lecture 9 : Decoherence

Decoherence 1s the phenomenon by which quantum superpositions disappear in favor of classical
states. It 1s due to the coupling of the system with its environment, which encompasses a huge number
of inaccessible and uncontrolled states, by inducing a strongly entangled state. The state of the
system, initially pure, becomes a statistical mixture. The classical states are the pointer states. Pointer
states are protected against decoherence. In contrast, superpositions of pointer states are generally not
pointer states, which explains the disappearance of their mutual coherence.

Temps de decohérence (en secondes) par type d'objet et par wzn'«rirnnrnmem«amtEt

Poussiere Agreégat moléculaire Molécule complexe

(10~3 cm) (103 cm) (10°% cm)
Dans l'air 1036 s 1032 s 1039 s
(10® m::’:::: pl:rt::::i:::fe cube) e e o -
Vide parfait + éclairage solaire 1021 s 1017 s 1013 s
Vide intergalactique + rayonnement 3 K 10°s 109 s ~ 11 jours 1012 s ~ 32 000 ans
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Lecture 9 : Decoherence

Measurement of the density matrix by a kind of tomography
technique and representation via the Wigner function

W(X,P)=[dXx"(X—X'/2|p|X+X'[2)e™"

Wigner function (2/m)

Imez}

Deléglise et al., Reconstruction of non-classical cavity field states with snapshots of their decoherence,

Nature 455, 510-514 (2008) 19



