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This chapter initiates our discussion of open quantum systems, which will also be the
subject of the next chapters. Here the term ”open system” refers to any system that is
not strictly speaking isolated, and, contrary to standard terminology in thermodynamics,
no distinction is made here between closed and open systems!. In practice, it is impossible
to completely isolate a system from its environment, whatever it is. When the system is
large enough and the coupling is weak, this generally leads to an equilibrium state where
the only effect of the environment is to impose its temperature and chemical potential to
the system. In contrast, for individual quantum systems, which may be microscopic or
mesoscopic, the dynamical time scales may be long enough to be observed and it is relevant
to consider the time-dependent dynamics of the system coupled to its environment before
an equilibrium state is reached. This is fortunate because otherwise we would not be able
to exploit the very quantum properties of the system, in particular quantum superposition
states and entanglement.

In fact, the environment, whatever it is, strongly affects the behaviour of almost any
individual quantum system. Just think about the simplest quantum system you can
imagine, say an atom in the vacuum. Its coupling to the radiation field makes the atomic
excited states unstable and generates spontaneous emission. More generally, coupling a
system of interest to another system usually strongly impacts its dynamics, which is no
longer unitary. One of the most spectacular effects of coupling a system to its environment
is decoherence, which suppresses quantum coherence and entanglement. This phenomenon
will be more specifically discussed in lecture 8.

The study of open systems is thus of utmost importance to modern quantum science
and technologies. There are several quite different, but in fine equivalent, approaches
to open quantum systems. In this chapter, we discuss a formal approach using the so-
called Kraus formalism. It allows us to derive the most general and compact form of
the evolution of an open quantum system, coupled to any other system. It leads to
the so-called concept of completely positive maps. We then discuss the case where the
system of interest is coupled more specifically to a bath in the thermodynamic sense. In
this case, the bath relaxes rapidly towards its equilibrium state and the dynamics of the
system becomes Markouvian, i.e. its instantaneous evolution only depends on its state at
the considered instant, the system losing the memory of its previous evolution. We hence

'We recall that in thermodynamics a system is said to be closed when it only exchanges energy with
its environment and open when it additionally exchanges matter.



obtain the Lindblad equation, which is the most general form of the Markovian evolution
of the density matrix of an open quantum system. Finally, we discuss two usecases: the
damped harmonic oscillator and a driven open system.

1 Dynamics of a quantum system coupled to another
quantum system: Kraus formalism

Here we consider a quantum system S coupled to another system B, on which we do not
make any particular assumptions at the moment. We, however, assume that (i) the two
systems are prepared independently, so that the initial density matrix of the bipartite
system S ® B factorizes at time t = 0,

pseB(0) = ps(0) ® p(0) , (1)

and (ii) S ® B is isolated during the subsequent evolution. In principle, the coupling of
the two systems generally leads to an entangled state so that the dynamics of one cannot
be separated from that of the other. If we are only interested in the dynamics of the
system &, i.e. if we only plan to measure S independently of B, we can nevertheless get
rid of the latter by performing a partial trace on its degrees of freedom. We shall see that
this operation strongly alters the dynamics of the system S.

1.1 Preliminary: Evolution of an isolated system

Consider first an isolated system. Its state is described by a ket |¢(t)). The solution of
the Schrodinger equation reads as

(@) = U#) [$(0)) (2)
where [¢(0)) is the initial state and U(t) is the evolution operator, solution of the equation

ih% = HHU(t)  with  U0)=1. (3)

Here H (t) is the system Hamiltonian, which may possibly depend on time.

The density matrix at time ¢ reads as

that is




where p(0) = [1(0))1(0)| is the initial density matrix. Moreover, the dynamical equation
for the density matrix is found writing

dp - L o
i dp HUH0)T — Up(0)UTH | (6)
that is
dp 1.
O ONE 7
D A1), (1) g

This formula is nothing but the counterpart of the standard Schrodinger equation in the
density matrix formalism.

Equations (5) and (7) still hold when the system S is in a mixed state but does not
interact with its environment. To show this, consider two systems & and B, initially in
an entangled state, which we write in Schmidt form,

[T(0)) 505 = D _ A [¥n)s ® X5 - 8)

They interacted in the past to create this entangled state but we assume that they do
not interact any longer at ¢ > 0. The Hamiltonian of the bipartite system then reads as
H = Hg+Hpy. These operators are possibly time dependent although the time dependence
is not explicitly written. The operators Hs and Hg are the Hamiltonians of the systems
S and B respectively. Since they act in distinct Hilbert spaces, they commute with each
other so that the evolution operator reads as U5®B = US ® UB The bipartite state at

time t thus reads as
Mo = S0 (Uslvin)) ;© (T b, 9)

The family of states {|x,),n} being orthonormal and the operator Up being unitary, the
family {(Up |xn)),n} is also orthonormal, and the reduced density matrix of the system
S at time ¢ reads as

= "l (Us ) ) (il OF) = Usps0)0% (10

This is nothing but Eq. (5) for the system S. Equation (7) for system S directly follows.

1.2 Evolution of an open system: The case of a POVM

The first example of coupling a system to another system is that of a generalized mea-
surement, which we named POVM (for more details, see lecture 5). Here the system B
is the meter M, which is assumed to be initially in some reference state |0),,. Then, for
any pure state of the system S, the initial state of the bipartite S-M system is

’\II>S®M W> ® ’0>M - ‘O>M & W)s . (11)
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When the system and the meter interact, we get a generally entangled-state, which may
be written as

W) soar = U 1%)snr = D (M [0 ) © )y (12)

m

where the states |m),, describe an orthonormal basis of the meter’s Hilbert space and the
Kraus operators are

~

My, = a(m| U [0), - (13)
Here, we wrote

N

U|\P>S®M = U|¢>S®|O>M = U|0>M|¢>S = E [m) y {mly U|0>M ) -
—_————
m Mm
Note that M,, is an operator on &s.

The Kraus operators M, fulfill a completeness relation, inherited from the unitarity
of the evolution operator U. Indeed, we have

L= (W) =) s (| M My [$)g (14)

since the states |m),, form an orthonormal family. This relation being valid for any state
of the system S, it implies

ZMLMm =1g]|. (15)

Note that in general the Kraus operators M,, are not Hermitian.

Generalized measurement of a pure state

When we read the result of the measurement, we perform a PVM on the meter in
the basis {|m),,}. It is described by the projector P, = 1g @ |m)m|,,. The after
measurement state of the bipartite system S-M is then

M,,
| My|ih)s @ [m) |
This state being a product state, the system S is well-defined by the ket
M|
Y) = ¥) : (17)
| Mol 9)]

where now omit the system’s index.



According to the Born rule, the probability of measuring m is P, = ’Mm|¢> ®|m),, |2,
that is

P, = [ Mo, |0)|*]. (18)

Now, if the result of the measurement is unread, the after-measurement state of S is
described by the density matrix

—ZP W|m><¢\m\—z i >‘|MT 7 (19)

that is

pl=">" My |)| M, | (20)

These formulas directly generalize those relevant to PVMs by replacing the projection
operators P; by the Kraus operators M, or M} depending on whether they are associated
to a ket or a bra.

Generalized measurement of a mixed state

These results can be further generalized to the case where the system & is in a mixed
state, described by the density matrix p. This can be shown using a purification approach
and applying the results above (see lecture 5).

The after-measurement state of S conditionned to the result of the measurement m is

) M, p M},
p|/m = A gt ) (21)
Tr (Mm P Mm)
and the probability of measuring m is
Py, = To(M,, p M) = Te(En p) |, (22)

where E’m = MJan

If the measurement is unread, we find p' = 3" P, x Pl Combining Egs. (21) and
(22), it yields

=> M, pM|. (23)

1.3 Evolution of an open system

To find the evolution of the reduced density matrix of the system S, we first write the
evolution of the bipartite system S ® B and then trace over the degrees of freedom of B.

>



It yields
ps(t) =) (xml| Uses ps(0) ® ps(0) Ulyp [Xm)s » (24)

where Ug®3 is the evolution operator of the bipartite system between the times 0 and ¢,
and {|xm)} is any orthonormal basis of the Hilbert space of B. We then choose the latter
as an eigenbasis of the initial reduced density matrix of B, so that

Inserting Eq. (25) into Eq. (24), we find

ps(t) = 5(xm|Useslxn)s £5(0) p5.a(0) 5(XalUksslXm)s (26)
that is

Z /OBTL m|npS(O)M:n|n with Mm|n = B(Xm|ﬁS®B|Xn>B ; (27)

or, equivalently,

= Z Mm,nﬁS(())MfL,n with Mm,n = pB,n(0)§<Xm|US®B|Xn>B/ : (28)

=Mm|n

This formula is called a positive map for it transforms a semi-definite positive operator into
another one, ps(0) — ps(t). It may also be called a quantum map, a quantum operation
or a quantum channel. Above, we introduced the operator Mm|n which we shall use later.
It is nothing but the operator Mmm conditioned to the fact that the system B was in the
state |x,) at time ¢t = 0 with unit probability, i.e. pg,(0) = 1 and pg 2, (0) = 0.

In the case where the system B is prepared in a pure state, say pg(0) = [0)X0|, the
evolution equation (28) can be simplified using pg, = d,,, which yieds

= M, ps(0)Mj, (29)

with Mm = Mm,o = B(Xm|US®B|O>B-

Content of the Kraus formula

Equation (29) is nothing but Eq. (20) when we discussed the coupling of a system S
with a measuring device in POVMs. This makes sense since it was the same problem
where the measuring device, assumed to be in a well-defined reference state |0)g, is here
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replaced by any system B that we did not specify. In fact Eq. (28) generalizes Eq. (29)
to the case where the system B is in any state, possibly a mixed state.

The operators ]\Zlm,n are called Kraus operators just as in POVMs. Note that they
are operators acting in the Hilbert space £s of the system &. Moreover, they fulfill the
completeness relation

> M My, =1s| . (30)

This is a direct consequence of (i) the unitary character of the evolution operator Uses
and (ii) the normalization of the density matrix of the system B.

We have thus obtained that the evolution of an open quantum system S is governed
by the set of Kraus operators an The latter depend on the coupling (all contained
in the conditional operators Mm|n) and on the initial state of the bath [contained in the
terms pp,(0)], but not on the initial state of the system S. The evolution equation (28)
of the density operator of an open system also generalizes Eq. (5), valid for an isolated
system. In the case of an open system, the unique evolution operator Uis replaced by the
set of Kraus operators. The latter are in general nonunitary. In fact, the completeness
relation (30) shows that a Kraus operator is unitary if and only if it is unique. Note that
in general, the individual terms MLRan in Eq. (30) are not simply proportional to the
identity either, see examples in the context of POVMs as well as in Sec. 3 below.

Physical interpretation of the Kraus formula

The general map derived above has a straightforward and enlightening interpretation.
To see this, let us first compute the probability that the system B jumps from the state
|Xn) to the state |x,,) after interaction with S for a time ¢t. We find it by writing the
probability that B is in the state |x,,) conditional to it being initially in the state |x,),

P with pses(0) = ps(0) @ |xn)(Xnlg It yields

P = Trsp[pses(t) ([Xm)Xm|) gl
= Trs | Trs (Useups(0) © xa)s (Xal U o) ()|

= Trs (i (Xl Usisis(0) @ [xa) s (nl Ubis P

that is R R
P = Trs [Mmmﬁs(())M;ln] , (31)

where Mm‘n is the conditional Kraus operator introduced in Eq. (28). Hence, by virtue
of the cyclic property of the trace, we find that the operator E,,,, = M, f

mln

the probability that the system B jumps from the state |x,) to the state |y,,). Quite
counterintuitively, this operator acts in the Hilbert space of § and not of B. This, however,

M), measures



Figure 1: Schematic
representation of the
action of a conditional

|1//>11 Kraus operator M.
|m) - @ i, ) A jump from |n) to
) |m) in system B in-
Tl duces a jump from [¢))
— to Mm|n |¥)) (nonnor-
malized) in the system

S.

makes sense: Since a jump of the state of B is induced by its coupling with S, it is natural
that its probability depends on the state of the latter.

We may now rewrite the quantum map (27) by introducing the ratio of the left and
right hand side terms in Eq. (31), which yields

A Mojnfs (0) M,
ps(t) =" p5a(0) X Praju ¥ k A‘T . (32)
o Trs [Mm|nﬁ3(0)Mm|n

The first two terms in the sum are, respectively, the probabilities that B is initially in
the state |x,) and that it jumps from the state |x,) to the state |x,,) in a time ¢. Their
product is the probability that B is initially in the state |x,) and in the state |x)
at time t. The last term is then interpreted as the evolution of the density operator
of the system S conditional to a jump of B from the state |x,) to the state |x,), see
Fig. 1. It has exactly the same form as the unitary evolution of § for an isolated system
where the evolution operator Us is replaced by the conditional Kraus operator Mm|n, see
Eq. (5). Note, however, that the Kraus operator being nonunitary, this evolution must be
renormalized so as to preserve the unit trace of the density operator. We conclude that the
Kraus operators Mmm play the role of evolution operators for the system S conditioned
to the jumps performed by B. In other words, Eq. (32) is nothing but the average of the
unitary-like evolutions of S averaged over the different state jumps of B.

1.4 Kraus theorem

The general quantum map derived above is very useful for it provides us with a clear
physical picture and an enlightening interpretation of the Kraus operators Mm‘n. As
discussed above, these operators are constructed explicitly from all possible jumps of the
system B from any state |y,) to any state |x,,). In such a formulation, there are thus of



the order of dim (53)2 Kraus operators, a priori all different?. If B is a very large system
— as is most often the case when considering the coupling of the system of interest S to its
whole environment — this represents a huge number of such operators. Yet, we must keep
in mind that, in fine, the Kraus operators are used to describe the evolution of the system
S and not of the system B to which it is coupled. Now, the former lives in a Hilbert space
of dimension dim (£s), potentially much smaller than dim (£3). The density matrix of S
is thus determined by of the order of dim (55)2 independent coefficients. We may thus
anticipate that only a set of about dim (53)2 may be enough. It can indeed be shown that
the Kraus operators are not unique and their number can be reduced to dim (85)2.

Kraus theorem
Any completely positive map on a quantum system S may be written in the form

ps(0) — ps(t) =K[ps(0)] = > Maps(0)M] (33)

0<a<dim(£s)?

with the completeness relation

> MIM, =1 . (34)

[e%

: : 2
The sum contains at most dim (€s)” nonzero terms.

Hence, if for instance S is a qubit, it lives in a Hilbert space of dimension dim (£s) = 2
but it can be coupled to a much larger system. Think for instance about a two-level
atom coupled to the radiation field, described by a continuous infinity of modes ¢, each
of which can accommodate an arbitrary number of photons N, € N. While the discussion
of Sec. 1.3 suggests we need an infinite number of Kraus operators, the Kraus theorem
shows that one can find a formulation with only up to dim (55)2 = 4 Kraus operators.
This is a considerable simplification! It shows in particular that the construction of the
Kraus operators should not be done naively. If one finds more than dim (53)2, it indicates
that further simplification is possible.

Interpretation of the compact Kraus form
The Kraus theorem has many important consequences.

On the one hand, it shows that the evolution of any open quantum system S can always
be interpreted as resulting from the coupling to an effective (fictitious) environment B, g
of dimension dim (£g,,) = dim (Es)” at most and initially in a pure state, pz,.(0) = |0X0].

2Here we do not take into account the constraints imposed by the fact that the evolution operator of
the bipartite system S ® B is Hermitian.



The Kraus operators M, are then interpreted as the actions on § induced by a jump of
B.q from the state |0) to a state |«). This interpretation is important especially when little
is known about the properties of the real physical environment and/or of its interactions
with the system of interest S.

On the other hand, the quantum map
ps(0) — ps(t) = K[ps(0)] = Y Maps(0)M] (35)

has exactly the same form as that resulting from an unread generalized measurement.
Hence, the Kraus operator M, describes the action of a (fictitious) measurement per-
formed by the environment B on the system S, having returned the result |a),,,

M(L‘SSMZ

f)» > »— ﬁs\u: . A
’ Tr[M(LpSM(t]

10)5 —»— > a)s

The quantum map (35) is then the average of all these processes, weighted by the prob-
ability of each jump in B. In other words, the evolution of any open quantum system S
governed by the coupling to another system B can be interpreted as the result of a set
of unread measurements performed on the system S by the system B. This is perfectly
consistent since the description we made in the context of POVMs. There, we described
the interaction of a system & with the meter M, which played exactly the same role as
the system B here. If, as done here, we do not use it as a meter, we do not get any
information about the measurement and the evolution is that of an unread measurement.

2 System coupled to a bath: The Lindblad equation

So far we have considered the influence of the coupling to an arbitrary system B on the
dynamics of the system of interest S, and we have found the most general form of its
evolution, as a Kraus map. We now make hypotheses on the system B and assume it is a
bath in the thermodynamic sense. As we shall see, this will allow us to find a differential
equation for the dynamics of S, in the form of the so-called Lindblad equation.
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2.1 Formal derivation of the Lindblad equation

To find a differential evolution equation, write first the Kraus quantum map (33) as a
stroboscopic dynamical process,

5s(0) — ps(AD) —s ps(2A8) — ... — ps(t) —s ps(t+ AL —s ... (36)

with
ps(t+ At) = M(t, At)ps(t) Ma(t, At)T (37)

where the set of Ma(t, At) spans the Kraus operators describing the evolution of S between
the times ¢ and t + At. According to the discussion of Sec. 1.4, the dynamics of the
system S is equivalent to a series of unread measurements. Due to the linearity of the
map with respect to the density operator, this may alternatively be seen as a series of
readout measurements, then averaged over the measurement results. Each measurement
generates a state jump in § induced by a state jump in B, while between two jumps,
the system & evolves according to its own dynamics governed by a Hamiltonian H, see
Fig. 2(a). In principle, the Kraus operators M, (¢, At) depend not only on the time step
At but also on the time ¢ at which they apply. This is because they depend on the state
of the bath B, which evolves together with the system S. Hence, in principle, the Kraus
operators ]\Zla(t, At) depend on the complete history of S ® B between the times 0 and ¢.

Assume now that the system B is a bath. According to the thermodynamic definition,
it is a huge system — formally infinitely larger than the system & to which it is coupled.
In this case, the bath B may strongly affect the system S but, in turn, § only marginally
affects B. Hence, if we assume that the bath is initially in an equilibrium state, we can
assume that it approximately remains at equilibrium in spite of its interactions with S.
More precisely, consider for instance the interaction of an atom with the radiation field
in the vacuum. A typical jump corresponds to the emission of a spontaneous photon,
which then populates a particular mode ¢;. After such an event, the radiation field is
not in the vacuum any longer but in a state where all modes are empty, except the
mode /1, which contains a single photon. In an infinite system, however, the spontaneous
emission is induced by the interaction of the atom with a continuous infinity of modes
¢ (all those whose angular frequency wy equals that of the atomic transition wa up to
the bandwidth I'). The modification of the population of only one of these modes has
therefore a negligible impact on the subsequent spontaneous emission of an excited atom.
Moreover, the bath being very large, it strongly interacts with its environment and its
state will relax very quickly towards the initial equilibrium state, in a typical time 73,
see blue bubble in Fig. 2(a). In the example above, the photon emitted in mode ¢; may
be reabsorbed by the walls of the cell where the atoms are trapped. For an atom in a
d = 10 cm wide cell, a spontaneous photon reaches the walls in typically 7 ~ d/2c where
c~3x10m-s7!is the speed of light, i.e. 7 ~ 0.15ns. This is much shorter than the
typical decay time of a atomic excited state, e.g. I'"! ~ 27 ns for rubidium atoms.
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Figure 2: Dynamics of an open quantum system S coupled to a bath B. (a) Schematic
representation of the evolution of the density matrix of §. The system undergoes a
Hamiltonian evolution governed by its effective Hamiltonian H (t), interrupted by jumps
induced by jumps in the bath. The bath relaxes rapidly to its equilibrium state, in a time
75 much shorter than the typical evolution time 75 of the system. (b) Representation in the
form of a stroboscopic circuit. At each elementary time step At, the system undergoes an
Hamiltonian evolution followed by a measurement, the whole being described by the Kraus
operator M, (At) where |a) is the measurement result imprinted in B. The state of the
bath, which plays the role of the measuring apparatus, is reset before each measurement
in the reference state |0). The evolution of S is the average of these trajectories over all
measurement results.

More generally, if we assume that the relaxation time in the bath, 75, is much shorter
than the dynamical time scale of the system of interest, 7s, the influence of B on the
dynamics of §, and thus the Kraus operators, are almost independent of time, and we
may write

s(t+ At) ~ ZM (A8)ps(t) Mo (AL (38)

where the Kraus operators Ma(At) stills depend on the time step At but not any longer
on the time ¢ at which they apply. The stroboscopic dynamics of the system S may
now be represented as a series of independent measurements, the bath (meter) being
systematically reinitialized in the same state before any measure, see Fig. 2(b).
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As discussed above, Eq. (38) is valid when the time step At is much longer that the
bath relaxation time 7. Assuming that this time step At is at the same time much
shorter than the dynamical time scale of the system of interest 7g, the density operator
of the latter evolves very little over each time step and we may write

ps(t+ At) = ps(t) + O (At) . (39)

According to the discussion above, this formulation is valid under the hierarchy of time
scales
T K At < 75 . (40)

The finite time step evolution is now to be determined from Eq. (38) and the corresponding
Kraus operators. To do so, we may take advantage of the nonunique form of the Kraus
operators and group together all the contributions close to unity in one of them, say
My(At). We may then write

Mo(At) =1 + (A—% >At+o(At)
: (41)
M1 (Af) = Lov/Al + 0 (\/E)

where we have expanded the first-order correction to umty of My(At) into a Hermitian
part and an anti-Hermitian part, My — 1 = (A — $H)At, where both A and H are
Hermitian operators. Since the operators Mazl(At) have a quadratic contribution, they
must be proportional to vAt. The so-called Lindblad operators I:a, just as the Kraus
operators M,, are in general non-Hermitian. The operator A may be found using the
completeness relation of the Kraus operators. Inserting the formulas of Eq. (41) into

Eq. (34), we find

i miy (AriAsA i 2
i=1+ (A+ SH 4 A hH) At + ;LQLQN +o(At) (42)
which yields
A 1 PN
A=—-N"1IIL, . (43)
2 a>1

Finally, combining Eqgs. (38) and (41), we find

ps(t+AL) = ps(t)+ (A - %H) Atps(t)+ps(t) (A + %H) At+Y " Laps(t) L At+o(At) |

a>1
(44)
Writing Aps = ps(t + At) — ps(t), we then find
Aps . . oa A i s
——=A A— —Hps+ —psH LopsLl . 4
At ps+psA—Hps+ 5 ps +Z psli, (45)

Finally, using Eq. (43) and replacing the finite difference ratio by a coarse-grained deriva-
tive, we find a closed equation for the density matrix of S:
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Quantum master equation in the Lindblad form
The time evolution equation of the density matrix of any quantum system S coupled to
a bath reads as

dps 1 2

== [Hms] + Z (La/)sLL - §psLLLa -

LI Lop 46
dt ih o o pS) ) ( )

1
2

where there are at most dim (£s)> — 1 Lindblad operators L.

The Lindblad equation is also called the master equation. It is the most general form of
the Markovian evolution of an open quantum system and makes no special assumptions
about the coupling between the system and the bath. The only important assumption
is that the bath is vanishingly perturbed by its interaction with the system and that it
relaxes rapidly towards its equilibrium state.

2.2 Physical content of the Lindblad equation

The Lindblad equation contains two terms that play radically different roles.

On the one hand, the first term in the right-hand side of Eq. (46), Zih [ﬁ, ,65] , is similar
to the evolution of an isolated system. If alone, it thus describes a unitary evolution,
which in particular conserves the purity, as well as any entanglement entropy. In other
words, a system in a pure state remains in a pure state and a system in a mixed state
remains in a mixed state. This term is also nondissipative so that it conserves the energy
of the system. Note, however, that the effective Hamiltonian H appearing in Eq. (46)
generally differs from the bare Hamiltonian of the system S, Hgs. Nevertheless, when the
coupling to the bath is weak, we expect H~ Hs..

On the other hand, the second term in the right-hand side of Eq. (46),

L'lps) =) (LaﬁsLL - %ﬁsLlLa - LLLaﬁs> : (47)

a>1
is called a Liouvillian. It describes a nonunitary evolution of the system S induced by
jumps in the bath B. The latter generate jumps in the system S similar to (unread)
measurement processes. They are described by the Lindblad operators L,, which may
alternatively be called quantum jump operators. In the most general case, this term does
not preserve the state purity so that a pure state can be transformed into a mixed state and
vice versa. There is no general rule and the entropy of the system may increase or decrease
depending on the situation. This term is also dissipative and describes energy exchanges
between the system and the bath. The energy of the system is therefore generally not
conserved.
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Note that the prime sign is used to stress that the Liouvillian £'[ps] written above
refers to the part of the evolution associated to the Lindblad terms. In contrast, the total
Liouvillian,

ilf/aﬁ8> 5 (48)

. 1 . A 1, +45 1
Cls) = 5 [1.05] + X (Ll = gosiila -

a>1

describes the complete evolution of the density matrix of &, including both the unitary
and the nonunitary contributions.

3 Usecases

We now apply the Lindblad formalism to a few paradigmatic physical situations. The
exact derivation of the Kraus operators is a tedious task, which will be tackled in Chap. 77
via the Born-Markov approach. Here we only rely on simple physical arguments, which
nevertheless turn out to be sufficient to write the exact forms of these operators. The two
examples below deal, on the one hand, with the relaxation of an open system towards
thermodynamic equilibrium and, on the other hand, with the dynamics of a driven open
system.

3.1 Relaxation towards equilibrium: The damped harmonic os-
cillator

Consider first the relaxation dynamics of an open quantum system. For the sake of
simplicity, consider a harmonic oscillator coupled to a bath of harmonic oscillators.

Model
More precisely, the system of interest S is a single 1D harmonic oscillator, governed by
the Hamiltonian
Hs = hws(éle +1/2) (49)
where wg is the system’s angular frequency and ¢ the lowering operator, with the com-
mutation relation [¢,¢f] = 1. The bath is made of an infinite number of 1D harmonic
oscillators and is governed by the Hamiltonian

Hg =" huy(blby +1/2) . (50)
l

Each oscillator corresponds to an excitation mode £ of the bath, with angular frequency wy,
and by is the annihilation operator of an excitation quantum in mode ¢. These operators
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fulfill the commutation relations [Z;g,i)},] = 0pe. We further assume that the system is
coupled to each bath mode, via the interaction Hamiltonian

Hy =) (hrebec + hijble) . (51)
¢

This coupling term describes correlated jumps in the system and either mode of the bath,
each with a coupling strength x,: The first term under the sum describes a jump of the
system to a higher energy state associated with the annihilation of an energy quantum
in the mode ¢ of the bath, thereby transferring energy from the bath to the system.
Conversely, the second term describes a jump of the system to a lower energy state
associated with the creation of an energy quantum in the mode ¢ of the bath, thereby
transferring energy from the system to the bath.

A concrete application example of this model can be realized in cavity quantum elec-
trodynamics: The system S is the cavity mode and the bath B is constituted by the
vibration modes of the mirrors.

Lindblad equation

The general form of the Kraus and Lindblad operators results directly from the elemen-
tary jumps in the bath: On the one hand, the absorption by the system of an excitation
quantum of the bath from the mode ¢ corresponds to a jump in the excitation number
such as Ny — Ny, — 1. This is induced by the term be¢t in the coupling Hamiltonian and
produces a Kraus operator such as M Ny—sNp—1 X V/N; &', where the term /N, is nothing
but bosonic amplification. Since they are all proportional to ¢f, they induce by summation
over the modes a single Lindblad operator, which we write

L, =VTé . (52)

On the other hand, the creation of an excitation in the mode ¢ corresponds to an opposite
jump such as Ny — Ny, + 1. This one is induced by the term in b}é and produces a Kraus

operator such as M Ny—Np+1 X /Ny +1¢. They induce by summation over the modes a
single Lindblad operator, which we write

L. =VDT+T'¢. (53)

The prefactors of the Lindblad operators are written v/I" and v/T +I" for convenience.
The physical meanings of the quantities I' and I are unveiled below. This discussion
yields the Lindblad equation

dp 1 1 1 1 1
d_'z =— [Awo éte, p] + (D +17) <a;3&* -3 hete — 5@*&;}) + I <é*ﬁa — éﬁééT — 5%@*;})
(54)

While the general form of this Lindblad equation has been written from simple arguments,
it can be shown to be exact and the expressions of the coefficients I' and I can be found
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explicitely. Note that the effective frequency of the oscillator, wgy, may differ from the
bare frequency ws owing to non-state changing processes induced by the bath. The latter
are, however, often very weak and wy ~ ws.

Steady state

We now discuss the solution of the Lindblad equation, and focus on the population of
each harmonic-oscillator state |n) of the system. The latter is given by p, = (n|p|n),
that is the probability that the system described by the density matrix p is in the state
|n). Its dynamics is given by inserting, respectively, the bra (n| and the ket |n) on the
left and the right of the Lindblad equation (54). It yields

%" = (04 1) (n+ Dpusr = npa| + T [mpay = (n+ Dpa] (55)
Remarkably, we find that the coherence terms (n|p|m) with n # m do not contribute.
We hence obtain a pure classical stochastic rate equation. On the one hand, the terms
in (n+ 1)p,41 and np,_; correspond to filling processes of the state |n) from the states
In+ 1) and |n — 1) at the rates (n+1)(I' +I”) and nl"”, respectively. On the other hand,
the terms in —np,, and —(n + 1)p, correspond to leaking processes from the state |n)
towards the states |n — 1) and |n + 1) at the rates n(I' + ") and (n + 1)I", respectively,
see Fig. 3(a). The same processes can be reinterpreted by separating the contributions
associated with I" on the one hand and I" on the other hand, see Fig. 3(b). The terms
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associated to I' are population transfer processes from the state |n) to the state |n — 1)
and are assimilable to spontaneous emission: The system loses energy by successively
creating excitations in the different modes of the bath. Note that these terms exist even
when the bath is in its ground state, (N,) = 0 for all modes ¢, since they are generated by
Kraus operators of the form MNZ—>NZ+1 x v/ Ng+1¢ # 0 for N, = 0. The terms associated
to IV are then assimilated to stimulated emission and absorption processes. They induce
transitions between the states |n) and |n — 1) with the same rates in either direction, and
exist only if the bath contains excitations, (N;) # 0.

The dynamics clearly yields a relaxation. The steady state is given by setting dp,, /dt =
0, which yields
Pn+1 I
[ A
This formula may be derived by iteration from n = 0. Since the system is a 1D harmonic
oscillator, its eigenenergies are equidistant, F,, ~ hws(n + 1/2), and the geometric decay
of the populations, Eq. (56), may be written as

(56)

1 .
pn= oD (—E/lyT)  with Z =" exp(~En/ksT) . 57)

The quantity Z is the probability normalization factor and 7" is such that I'V/(I' + ") =
exp (—hws/ksT). We thus find that the steady state of the system S is nothing but
a thermodynamic equilibrium state at the effective temperature 7. Note that since 0 <
I"/(C+TI") < 1, this temperature is a well-defined nonnegative quantity. In fact, it may be
shown using the formalism of lecture 7 that T is the temperature of the bath. Therefore,
we have obtained nothing but a thermodynamic equilibrium of the system and the bath,
where the bath imposes its temperature to the system. This is consistent with standard
thermodynamics.

Relaxation towards equilibrium

The Lindblad equation also gives the relaxation dynamics towards equilibrium. Con-
sider for instance the relaxation of energy, U = hws((¢'¢) +1/2). We obtain its dynamical
equation by writing (¢'¢) = Tr (¢'¢). Using the Lindblad equation, we find

d(ete)
dt

= -T(efe) + T . (58)

It follows that the quantity (¢'¢) relaxes towards an equilibrium state given by

o 1
I exp(hws/ksT) — 1"

<6Té>eq =

(59)

where we have used the definition of the temperature 7' given above. This is nothing
but the Bose-Einstein formula, corresponding to the average excitation number of a 1D
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harmonic oscillator. Moreover, the relaxation rate is I' and does not depend on I''. This
is natural since the stimulated processes happen at the same rate from |n) to |n — 1) and
vice versa. More precisely, given the initial state, the explicit solution of the dynamical
equation (58) reads as

(éTe)(t) = FF/ (1—e ™) +eTee)(0) . (60)

This solution is shown on Fig. 3(c) for two initial conditions depending on whether the
initial value (¢'¢)(0) is higher or lower than the equilibrium value I'/T.

3.2 Driven open system: Optical Bloch equations

Consider now an open system subjected to an oscillating external field. A typical example
is that of an atom subjected to a laser field.

The atom is considered as a two-level system, with ground state |g) and excited state
le), separated by a transition energy E. — E, = hws. We call 64 = |e)(g| and 6_ = |g)(e|
the atomic raising and lowering operators. The atom is subjected to a monochromatic
laser field of angular frequency wy,. The atom-field interaction, described within electric
dipole approximation, reads as

hQL(R) e—ith b hQL(R)* e+ith

VaL(R,t) = 64 ; 5 ,

(61)
where €1, is the Rabi angular frequency and R is the position of the atom.

The radiation field is assumed to be in thermodynamic equilibrium at temperature 7.
The average photon number in any mode /¢ is given by the Bose-Einstein distribution

1
N = (e [k T) — 1

(62)

Since we are interested in the coupling to the atom, the relevant modes are those with
angular frequency wy >~ wy4. In the optical domain, corresponding to wavelengths A ~
400 — 700 nm, we obtain Aw,/ky ~ 2 —4 x 10* K~'. At room temperature, 7' ~ 300 K, we
obtain hwy/ksT ~ 60 — 120 and (Ny) ~ 10726 — 107°2. To an excellent approximation,
the relevant modes of the radiation field are thus essentially empty at room temperature
and the field can be considered in its ground state. This still holds up to temperatures of
the order of a few thousand Kelvins.

The coupling between the atom and the radiation field is considered also in the electric
dipole approximation and reads as

Hy =) (hroioy + hrjalo_) (63)
l
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where a, in the photon annihilation operator in mode ¢. This coupling has the same form
as in the damped harmonic oscillator problem discussed in the Sec. 3.1. Therefore, it
generates similar jump terms. However, the field being in vacuum, only the spontaneous
emission terms remain and there is a unique Linblad operator of the form

L. =VTs_ . (64)

Including the coupling with the laser field, which is unitary in contrast to the coupling to
the quantized vacuum, and using the relations 6, = 61 and §,6_ = |e)(e|, we obtain the
Lindblad equation

TR - ) 1 1 )
L — —[mnleel + Vaw(t). ] +T (a_pa+ — S leel -  lekel p)

5 (65)

where Hy = hwy |e)e| is the atomic Hamiltonian, with an angular transition frequency
Wy =~ wy, slightly modified by the Lamb shift.

This formula is equivalent to the standard optical Bloch equations (OBE). To show it,
apply the bra and ket corresponding to the atom ground and excited states, respectively
on the left-hand and right-hand sides of the Lindblad equation (65). It yields

dfl) ;e = —Tpee + i%e”%tpeg — '%eim/)ge (66)
% = 4Dpe — z’%eﬂ“’”peg + i%e_iw”ﬂge (67)
% - (g + mo) pes — @'%e‘w (Pec — Pe) (68)
% = - (g — iwo) Pge T i%e“m (Pec — Pag) - (69)

The first two equations deal with the populations of the excited and ground states, re-
spectively. They are consistent with the normalization condition pge + pee = 1. The
last two are consistent with the fact that the density matrix is Hermitian, p7, = pg.. In
contrast to the damped harmonic oscillator discussed in Sec. 3.1, the evolution of the
populations of the ground and excited states, pge and pee, depend on the coherence terms,
Pge and pge, and vice versa. Hence, we do not obtain classical rate equations here. This
coupling between populations and coherences is induced by the driving, i.e. the coupling
of the atom to the time-dependent laser field VAL(R, t), which was absent in the case of
the damped harmonic oscillator. In fact, although the interaction Hamiltonian VAL(R, t)
and the Lindblad operators L, induce similar elementary processes, they lead to radi-
cally different dynamics. Indeed, they both induce atomic state transitions generated by
the operators 6, and 6_. However, the interaction Hamiltonian VAL(R, t) is a coher-
ent coupling term, which typically produces Rabi oscillations. Conversely, the Lindblad
operators L. are incoherent and lead to dissipative dynamics, i.e. typically exponential
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relaxation towards a steady state. When these two terms are present, as in the general
case considered here, the solution of the optical Bloch equations are damped oscillations,
see part 3 of the 2021-2022 exam.
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