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Along with entanglement, measurement processes are one of the most fundamentally
quantum aspects of the theory, and profoundly change our understanding of the physical
world. Although we have at our disposal a robust operational formalism to efficiently
describe measurement processes, their interpretation and profund understanding are still
subject to debates and different interpretations remain on the table. This concerns in
particular the role of the observer in measurement procesess. For a detailed discussion,
see for instance Ref. [1]. Here, we shall not discuss these questions, which are still rather
a matter of philosophical debate than a physical question. Instead, we shall focus on a
concrete discussion of measurement processes, at the heart of physical predictions.

Measurement processes in quantum physics are primarily associated with the notions
of probability and collapse of the wave function. This is one of the most puzzling aspects of
quantum physics. Contrary to what happens in classical physics, a quantum measurement
does not simply extract information about the state of the system. It forces the system
to acquire the value obtained by the measurement. Thus, if a particle was in a well-
defined momentum state, its position is totally undetermined. But, by performing a
position measurement, i.e. by asking the particle where it is, we obtain a well-defined
value and we force the particle to acquire this position. Its momentum then becomes
totally undetermined.

As we shall see, this is, however, only one aspect of the problem. More fundamentally,
measurement theory is associated with a large number of subtle concepts, including pro-
jection valued measurements (PVM), positive operator valued measurements (POVM),
quantum non demolition (QND) measurements, ... All these aspects are discussed in this
chapter. Before proceeding, it is worth recalling the obvious: A measurement in quantum
mechanics, as anywhere else, primarily serves to acquire information about the state of
the system.

1 Projective measurements (PVM)

Let us start by describing standard measurements in quantum physics, namely projective
measurement processes. Technically, one usually speaks of projection-valued measure-
ments (PVM), a term inherited from a very general underlying mathematical theory that
we shall not try to explain in detail here. Let us simply keep in mind that the result of



Figure 1: Measurement theory. When we measure an observable O on a system described
by the ket [¢), one can find any of the eigenvalues O; of ©. The probability to find
the value O, is the square modulus of the projection of the ket onto the corresponding
eigenspace, ]75j\¢>|2, generated by the kets [a), where v accounts for the possible degen-
eracy of O;. If O, is found, the ket is then projected onto the corresponding eigenspace,
and renormalized, [1)) — [1') = 75]]1/)>/‘75]|¢)‘

a measurement is a projection: The projection operator allows us to determine both the
probability of the measurement result and the state of the system after the measurement.

1.1 Projective measurement of a pure state (reminder)

The standard theory of projective measurement was conceptualized by von Neumann on
the basis of the Born rule. We recall that, in quantum physics, an observable is described
by a Hermitian operator O and, for an isolated system, the state is described by a ket
|1). The possible results of a measurement are the eigenvalues O, of the operator @,
associated with the eigenvectors |a¥), assumed to be orthonormal. In these notations,
j spans the set of distinct eigenvalues of O and the other index v accounts for possible
degeneracies, see Fig. 1.

Single measurement
The result of an individual measurement is random. It yields O; with probability
P; = |75j|¢>‘2 (Born’s rule) (1)

where

Pi=) la) (e (2)



is the projection operator onto the eigenspace of O associated with the eigenvalue O;.
After a measurement giving the value O;, the state of the system is projected onto the
corresponding eigenspace and renormalized,
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This is the state of the system conditioned to the result of the measurement.

) — [);) = (collapse principle) . (3)

The average value of measurements performed on a set of systems all prepared in the

same initial state is R
(0)=> " P,0;=@0) (4)
J

where we have used the spectral expansion O = > i Oj75j and the fact that a projector is
a Hermitian operator.

Remarks:

1. The projection operators 75j are sufficient to determine both the probability of a
measurement result, Eq. (1), and the after-measurement state of the system con-
ditioned to the result of the measurement, Eq. (3). We may thus say that the
result of a measurement is a projection operator, hence the name projection-valued
measurement (PVM).

2. A PVM provides classical information in the sense that it determines the measure-
ment result of a particular observable O. In particular, it disregards the coherences
between the different subspaces £;(O) associated to the different measurement re-
sults.

3. The collapse principle and the idempotent property of projectors, 75]2 = 75]-, ensure
that while the result of a first measurement is random, any subsequent measurement
performed immediately after the first one on the same system returns the same
result.

4. A single measurement yields information about the system but it is important to
understand which. If the measurement yields O;, we know that

(i) The initial state had a nonvanishing component in £;(Q0). This is a very weak
but nonnegligible amount of information (see below).

(ii) The final state is in &;(O). If the value O; is nondegenerate, the final state
is exactly known (up to an irrevelant phase). Note that this offers a way
to prepare the system in a given state, although it requires a post selection
conditioned to the result of the measurement.



Unread measurement

So far, we have assumed that the measurement was read. Let us now assume that a
measurement has been performed but that the result is not read by the observer. Although
this seems like an academic question in the context of a measurement, we shall see later
that unread measurements have very important applications for the interpretation of the
dynamics of open systems and decoherence. In the case of an unread measurement,
the state is projected in one of the other of the states P;[¢)/ !75]|¢>‘ with probability

P, = |75]|¢>|2 Considering the (classical) information we have, the after-measurement
state is described by the density matrix

; Pile) (WP,
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j j |P5l)]
that is ) )
pl="Y Pl WIP; . (6)
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It can be checked that the after-measurement density matrix p’ fulfills all the necessary
conditions for being a density matrix, see exercise 1b, page 21. The fact that a measure-
ment turns the description of the system state from a ket (pure state) to a density matrix
(mixed state in general) illustrates the acquisition of classical information.

1.2 Projective measurement of a mixed state

Assume now that even before the measurement we only have a partial knowledge of the
system state. It is thus not defined by a ket any longer but by a density matrix. The
latter may be written as

p=> [t )tnl (7)

where the [1,)’s form the family of possible states of the system, each with probability
I1,,. We recall that the |¢,,) are normalized but not necessarily mutually orthogonal.

Measurement probability
Let us now perform a measurement of the observable . As before, one can obtain
either of the values O; with probability P; = 1II,, x Pj,, which may be written as

P =Te(pP;) ], (8)

The derivation is straightforward and consistent with the Born rule (1) in the case of a
pure state, see exercise 2, page 21



After-measurement state and Bayesian inference

Let us now determine the state of the system after the measurement. Assume that we
have obtained the value ©;. Taking into account all the possible states of the system
before the measurement, a naive calculation would yield

h=D My =it (9)
However, such a result raises inconsistencies. In particular, if a possible state |,) is

orthogonal to the £;(O), we have P;|,) = 0 and the quantity P;|v) (1n|P;/|P;]0n)]? is
hill defined.

n

In fact, the above calculation ignores an important aspect of the measurement, namely
that it provides information about the state of the system, which we did not necessarily
have before the measurement. In particular, if we obtained the value O;, we acquire the
information that the system was not in a state orthogonal to 8j((’>). This removes the
hill-defined terms in ﬁ"J., but one can also do a much better use of the information gained
by the measurement. Indeed, we may substitute the initial probability of the state |n) to

its counterpart conditional to the measurement result, i.e.
Iy = Py - (10)

This approach, well known in classical probability theory, is called Bayesian inference.
Although the quantity P,; may seem difficult to calculate at first sight, it is easily found
from the previously calculated P, using the Bayes theorem,

Pb\aPa
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Pb Y ( )

which is a direct consequence of the well-known relation P,, = B, x P,. Using the
relation Pjj, = |P;]4,)|? and, Eq. (8), and the substitution (10), we then find

=30 x ) (Wnl Py 220 [¥n) (¢

Pa|b:

= - — , (12)
no\ P] , |’P]|7,Dn>|2 Tr(ppj)
Py

that is
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Py = WJ) : (13)

Moreover, if the measurement is not read, we have to average the conditional results
/3|’j over the measurement results and we find p* = > ; Py % /3|’j, which yields

pr= PPl (14)
j

Note that both ,6|'j and p’ fulfill all the properties of density matrices.

>



Quantum information approach

It is instructive to reconsider the above problem from the quantum information view-
point. Assume that the system of interest (A) is coupled to another system (B). If the
bipartite system (A ® B) is isolated the state may be written, without loss of generality,

|qj>A®B = Z Cn |¢n>A ® |Xn>B ) (15)

1§n§dim(jf3)

where the [1,)4’s form a family of normalized states of £4 (not necessarily orthogonal)
and the |x,)p’s form an orthonormal basis of €. Normalization of the bipartite state

|W) agp implies
Y alr=1. (16)
1<n<dim(.#%5)

The associated reduced density matrix of the sub-system A then reads as

pa= 3" leal? Tnktial - (17)

Let us now perform a measurement on the subsystem A only. Such a measure
corresponds to an observable of the form O4 ® 1. Similarly, the states of B being
irrelevant, the projectors on the eigenspaces of the observable are written as 75j7 AQ1p.
The measurement probabilities as well as the states obtained after measurement can then
be obtained from the bipartite state (15). The probability of obtaining O; is [see Eq. (1)]

A - 2 A
Py = |(Pra@1p)[9)[" = Tr(Pipa) , (18)
see exercise 3, page 21. Equation (18) is nothing but Eq. (8).

Let us now asume that we have obtained the result O;. The bipartite state conditioned
on this measurement result is [see Eq. (3)]

(Pra®1p) S e l0n)a® ads  Snen (Piltn) , @ [xn)s |

;) = — = = (19)
¥ ﬂ P]
It corresponds to the reduced density matrix
~ Zn ’Cn|275’ |1/)n><¢n| 75
01/4\] - JP ! ) (20)

J

which is nothing but Eq. (13).

We thus find by the quantum information approach the same results as obtained
by the density matrix approach. It is quite remarkable that, here, we did not need to
explicitely use Bayesian inference, i.e. we did not need to modify by hand the probabilities
of the various possible states of A. The reason is that the projection is performed on the
bipartite space £4 ® £ and it is the ket in this space that is globally renormalized. In the
subspace of €4, this corresponds to projecting the reduced density matrix, p — 75]-,675j,
and then to renormalize by Tr (75]»;375]»), that is to say Eq. (13).
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2 Quantum nondemolition measurements

We now study a class of measurements specific to quantum mechanics, called quantum
nondemolition measurements (QND measurements).

2.1 Motivation

Usual measurements in quantum physics are destructive. This contains two realities that
should not be mixed up:

On the one hand, by virtue of the Born collapse rule, the state of the system is modified
by the measurement. There is strictly nothing we can do against it. To the best of our
knowledge, the collapse rule is a fundamental aspect of quantum physics and, up to now,
no experience has ever challenged it. It is worth noticing that this is a characteristic
of quantum physics. In classical physics, the coupling to a measurement device may of
course affect the system’s dynamics but it is a perturbation, which can, in principle,
be arbitrarily reduced. I contrast, a PVM in quantum physics, dramatically affects the
system state, whatever the coupling strength to the measurement device.

On the other hand, the physical integrity of the system may be affected by the mea-
surement process. In extreme cases, it does not even exist any longer after the mea-
surement. The system is thus demolished. In fact, standard quantum measurements are
demolition measurements. It includes the Stern and Gerlach experiment, the Young slit
experiment with photons or electrons, photodetection of single or multi-photon states, as
well as time-of-flight imaging in ultracold atoms, to name a few. However, in contrast to
wavefunction collapse, this is a practical rather than fundamental issue and, one can in
principle overcome it. In the following, we shall describe a general approach to realize a
full QND measurement using quantum entanglement.

Before proceeding, let us stress that standard (demolition) measurements have many
disadvantages: Firstly, as mentionned above, an important property of PVMs in quan-
tum physics is that, although the result of a measurement is random, two subsequent
measurements of the same quantity always yield the same result. This is ensured by the
idempotent property of projectors (75j2 = 753) However, this pivotal property for the con-
sistency of quantum physics cannot be tested experimentally if the system is destroyed
after the first measurement. Secondly, as already mentioned above, an efficient method to
prepare a system in a given state is to measure it in this state: Assume you have a qubit
in the state [¢) = a|0) + 8 |1) and measure it in the basis {|0), |1)}; If the measurement
returns 0, the qubit is now for sure in |0); If the measurement returns 1, the qubit is for
sure in |1). However, if the system is destroyed by the measurement, it is of little use for
subsequent quantum information processes! Finally, it is not possible to track the time
evolution of a quantum system. This is most often not a serious issue as a measurement,



wathever it is, would alter the unitary evolution of the system. In contrast, it is a serious
issue to demonstrate effects induced by repeted measurements such as the Zeno effect for
instance.

2.2 QND measurement: Formal definition

Let us first give a formal definition. Although it will be of little use to us in the remainder
of the discussion and, n fine, does not add much to measurement theory, it is the definition
that is given in many monographs:

A QND measurement is a measurement that can be repeated a large number of times, at
arbitrary times, and always returns the same result.

This definition has two immediate consequences. On the one hand, the system must
be available after the measurement. On the other hand, it requires that the evolution of
the system between two measurements maintains it in the eigenspace corresponding to
the result of the first measurement, as illustrated on Fig 2.

Property
A quantum measure is QND if and only if

(i) The system is available after the measurement;

(ii) The observable @ commutes with the evolution operator U(t) at any time, or
equivalently, with the Hamiltonian H(t) at any time.

Note that, the second requirement may be smoothed if we only require that the measure-
ments are repeated at the discrete times ¢y, to, 3, ... Then, it is sufficient to show that
U(t,) commutes with O for any j.

Figure 2: Sketch of a QND mea-

o, surement, according to the definition
of Sec. 2.2. The first measurement
projects the state on the eigenspace
of the observable corresponding to the
obtained result. The subsequent evo-
lution — unitary evolution (solid blue

0, line) interrupted by measurements (red
points) — maintains the state in the
same eigenspace.
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Figure 3: Principle of a QND measurement (see text).
Examples of QND or non-QND measurements are listed below:

e For a free particle, governed by the Hamiltonian H = p° /2m, p is a QND measure-
ment but 7 is not.

e For a harmonic oscillator, H = hw(ata + 1/2) = p2/2m + mw?i2/2, neither 2 or p
is QND. In turn, the excitation number n = afa is QND.

e For a 1/2-spin in a magnetic field B = Be,, S, is QND but Sy and S, are not.

e For any system, the energy is QND.

In all these examples, it is assumed that the system is available after the measurement.

2.3 QND measurement in practice

From now on, we adopt a more "relaxed” definition of QND measurements, consisting
in requiring only the condition (i) to hold, namely that the system is available after the
measurement. The idea to perform a QND measurement is then to couple the system of
interest to an auxilliary system and perform a standard, i.e. demolishing, measurement
of this auxilliary system, without ”touching” the system of interest. Of course, the aim
is to carry out a true measurement of the system state, i.e. to know in which state it is
(after the measurement).

General principle

The principle of a QND measurement is shown as a quantum circuit on Fig. 3, and
may be summarized as follows: Assume that the system S you want to measure is in the
general superposition state [1)) = Y ¢, |n), where {|n)} is an orthonormal basis. Then
prepare an ancilla A into some reference state |0) and couple it to the system using an



appropriate evolution operator U, so as to create an entangled state of the form

2) =3 e ) @ [x) (21)

n

where {|x,)} forms an orthonormal family. This requires that the dimension of the
ancilla Hilbert space is at least equal to that of the system of interest. Then, assume
you can perform a standard PVM in the {|x,)} familly by coupling the ancilla to a
measurement apparatus, without touchlng the system. The probability to find |y,) is

— |Po| W) |2 = |ea|?, where P, = 1g ® Pa,, is the projector onto the ancilla Hilbert
Space associated to |x,). This probability is equal to that of the system being initially in
the state |n). Moreover, assuming you find |x,), the bipartite state is projected onto the
conditional pure state

PulP)

\‘I’>—>\‘I’/>:m

In = [n) ® [xn) - (22)
After the measurement, the system and the ancilla are no longer entangled and the system
is in the pure state |n). More precisely, in many cases, the state [n)g¢ ® |x») 4 is actually
improper because the ancilla is physically destroyed by the PVM, and we should rather
restrict the after-measurement state to that of the system of interest, i.e. |n). Note that
neither the coupling U nor the PVM on A has destroyed S, which is still available for
subsequent processes. In the end, we have thus realized an effective PVM on S without
destroying it, i.e. a QND measurement of S.

The feasibility of such a QND measurement requires that we are able to realize an
appropriate gate U. We can formally convince ourselves that this is indeed possible by
noting that the operation

D ealn) @0) — > cnln) @ [xa) (23)

n

can be prolongated into a unitary operation. Indeed, the states |n) form an orthonormal
basis of £g, so that the both {|n) ®(0),n € N} and {|n) ® |x,),n € N} form orthonormal
families of £sga, which can thus be completed into orthonormal bases. Note that this
would also hold if the |y,)’s were normalized but not orthogonal. Here, we have never-
theless assumed that they are orthonormal, so that there can exist an observable to be
measured of which they are eigenstates. Note also that it is not necessary for the states
of the system S and the ancilla A be the same. It is enough to have the reading code
In)g <> [Xn)4- It is not even necessary that the two systems are of the same nature.

Example
Let us turn to a concrete realization. Assume that the system of interest S is a qubit.
To perform a QND measurement, we need an ancilla that lives in a Hilbert space at
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(a) P SN (b) N Figure 4: (a) and (b) Ef-

\ . fect of an antiferromagnetic
coupling between two spins.
It shows a 7/2 pulse on the
ancilla spin A (red arrows),
initially in the state |+y) 4,
depending on whether the

: )/
‘ Yl
B //'/4/’

©) spin § (blue arrow) is (a) in
alv2)s+8l-2)s | U [+2)s the state |[+2) g or (b) in the
T T -2), state |—2)g. (c) Quantum
circuit realizing the QND
A 504 Rz(+%)—RZ(-E) » | [-0a measurement of the spin
: |+x) [+x), state of S, using an ancilla
spin A.

least as large, so at least another qubit. For simplicity, we shall use here a 1/2-spin
representation. Assume that the system of interest S is in any state

[)g = al+z)s + Bl—2)s - (24)
The ancilla is then prepared in the state

_Ratil=2)a
[+y)a = 7 (25)

and we apply the Ising-type coupling Hamiltonian

R
H:(Jsg-s;:g&g-&;. (26)

For the sake of concreteness, the coupling is assumed to be antiferromagnetic (J > 0) so
that ¢ = hJ/2 > 0, but similar results are obtained with negative ¢g. Since H is diagonal
in the computional basis {|+2)¢ ® |£2) 4}, its action is trivial:

e If Sisin the state |[+2), H acts on A as a magnetic field along the z axis. Since g > 0,
it induces a counter-clockwise precession of the qubit A around z, see Fig. 4(a). The
interaction strength and times are tuned so as to realize a m/2 pulse, i.e. t = 7/2g.
It realizes the transformation®

[+y) 4 — (27)

1
— =), -
Vi
!The phase factor is found by integrating the Schrédinger equation. It is, however, unimportant here
since it does not alter the QND measurement.
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e If S isin the state |—z) the effective magnetic field acting on the ancilla A is inverted
and the rotation on the Bloch sphere is now clockwise, see Fig. 4(b). It realizes the
transformation’

[+yha — Vil+a), - (28)

This process may be represented by the quantum circuit shown on Fig. 4(c). Since the
coupling is unitary, at the end of the interaction process, the bipartite system S ® A ends
up in the entangled state

Wma) = % [+2)s ® |—2) , + ViB|=2)s ® |+2) , - (29)

We can now perform a PVM of the spin of A along the x axis:

e We find the ancilla in |—z) , with probability |«|? and the system S is then projected
onto |+2);

e We find the ancilla in |[+z) , with probability |3]* and the system S is then projected
onto |—z).

We have hence realized a QND meaurement of the spin state of S.

2.4 QND measurement in cavity quantum electrodynamics

We now discuss a concrete implementation of a QND measurement in a cavity quantum
electrodynamics (CQED) experiment. It essentially realizes the scheme proposed above.
The idea is to measure the photon number in a cavity C', without destroying the photons,
via Rydberg atoms. The system of interest is the photon field in the cavity mode and the
ancilla is a Rydberg atom. Here we focus on a simplified discussion, which contains the
main ingredients of the experiment. In the following, we assume that the cavity mode
has angular frequency w and contains at most one photon. The most general state reads
as

[¥)e = al0) +51[1) . (30)

The Rydberg atoms are considered as two-level systems, with ground state |g), excited
state |e), and atomic angular frequency wy. The experimental apparatus is shown on
Fig. 5.

The Rydberg atoms are emitted from the box B. They are all prepared in the excited
state |e) using an excitation cascade, and injected one by one in the apparatus. Each
atom is then turned into a 50%-50% superposition of the ground and excited states. This
is realized by a m/2 pulse in the cavity R;. The latter contains a resonant quasi-classical
field, at the angular frequency w; = wx. The atom undergoes a Rabi oscillation of unit

12
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Figure 5: Experimental device for the quantum nondemolition measurement of photons
in a cavity.

amplitude and period 27/Qr where Qg is the Rabi angular frequency. By setting the
interaction time to T = 7/2{g, the atom ends up into the state

—ilg) +e 4T Je)

Ny = 31
) 5 @1
To simplify the calculations, we assume here that wsTg = 0 [27], so that
lg) +ile)
y =g tiler 32
= =i B 3

This transformation corresponds to a rotation of the Bloch vector around the x axis from
le) = |—z) to —i|+y), in spin notations.

The atom then enters the cavity C' and interacts with the cavity field to be measured.
We assume it reads as in Eq. (30) when the atom enters the cavity C. The cavity mode has
angular frequency w, detuned from the atomic resonance by § = w—wy4 < 0. The coupling
Hamiltonian reads as H = Hy + Ho + H,,,, where Hy = hwy le)(e| is the Hamiltonian of
the atom, He = hwala that of the cavity mode, with a the photon annihilation operator,
and H,, = Mo (le)g| a + |g)e|a') is the coupling term. In the weak coupling regime
considered here, [0| > Q,,, the Hamiltonian can be solved using perturbation theory. To
lowest order, the eigenstates, |g,0), |g,n + 1), and |e,n) for n € N, are unperturbed. The
ground state |g,0) is isolated and has energy E,o = 0. The energies of all other states

13



are calculated using second-order perturbation theory, which yields

2 2

h$) h$2
Egni1 > Egm-i-l - T{;T(” +1) and Eon = Eg,n + ﬁ(n +1), (33)

with £, ., = hw(n+1) and EY, = hwa + hwn the unperturbed energies. Now, the state

g
of the atom-field system at the input of cavity C reads as

(%) @ (a]0)+ A1) (34)

V') asc

= (=il 0+ 1e0) + La(~ilg D)+ o))

After an interaction time T, we thus obtain

o . —iw —i
|\IJH>A®C’ = ﬁ( —1 |g7 0> +e ATCe %o |ea O> ) (35)

£
V2

with ¢ = Q3T /4|5]. By setting the system so that ¢y = 7/2 and assuming waTe = 0 [27]
as before to simplify the calculations, we finally obtain

|\IJ”>A®C _ —ZOé|g> + |€> ® |O> + 6e_iWTC |g> — ’e> ® ‘1> ) (36)

V2 V2
We have thus generated an atom-field entangled state. The zero and one photon states, |0)
and |1), are coupled to the atomic states (|g) +|e))/v/2 = |+) and (|g) —|e))/V/2 = |+x),
respectively. By performing a standard PVM of the atomic state in this basis, we realize in
principle a QND measurement of the photonic state. Note that the probability amplitudes
have been preserved, up to a phase, by the coupling, so that we obtain |0) and |1) with
the probabilities |a|? and |3]? of the initial cavity state.

+ e—inc( _ Z'e+i¢0 |g’ 1> + e—iwATce—i2¢0 ’e’ 1> ) ’

It is, however, not straightforward to measure the atom in the appropriate basis. We
know how to measure in the {|g),|e)} basis. We may for instance subject the atom to a
field resonant with a |e) — |2) transition, but off resonant with any transition from |g),
and perform a 7 pulse. Should a photon be absorbed, the atom was in |e); Otherwise it
was in |g). Such an approach cannot be extended to measure in |+z) because the two
states have the same energy, at least without forbidding the transition from one of the
states by some symmetries.

To circumvent this difficulty, we may rotate the atomic state, independently of the
photonic state, before measuring it. This is realized by the cavity R,. It contains a
resonant quasi-classical field, similar to that in cavity R; but with a relative phase —m /2.
It realizes a rotation of the atomic state by 7/2 around the y axis in a counter-clockwise
direction,

|g) + le)

V2

— +g) and =" —e) (37)
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and the atom-cavity state now reads as
[0") s = —icr|g) ® [0) — e |e) @ [1) . (38)

We can now measure the atomic state in the standard basis {|g), |e)}:

e The atom is measured in |g) with probability |a/|?, and the cavity field is then
projected onto |0);

e The atom is measured in |e) with probability |3|?, and the cavity field is then
projected onto |1).

A QND measurement of the photon number in the cavity mode has thus been realized.

This apparatus has been applied to a variety of QND measurements, including the
determination photon numbers [2] and well as the observation of the birth and death of
a thermal photon in the cavity [3].

3 Generalized measurements (POVM)

In fact, standard a la von Neumann PVMs are only a particular example of a more general
class of measurements in quantum physics. Their framework is often too restrictive and
not adapted to many real experimental situations met in the field of quantum information.
We have actually met a concrete example above in the discussion of QND measurements
in CQED: If we do not apply the last rotation of the atomic state on the Bloch sphere
as realized by the cavity R», then the measurement of the atomic state |g) or |e) projects
the cavity state onto —ia|0) + Be~™T¢ |1), respectively. In general, these states are
not orthogonal and therefore cannot be associated to the orthogonal eigenspaces of a
Hermitian observable @ acting in the Hilbert space of the cavity C.

There are many other examples. For instance, the detection of the state of an atom
can be realized by ionization: The atom is subjected to an electric field gradient. The
ionization starts at the point where the energy transfer equals the ionization energy.
Since this ionization energy depends on the atomic state, we can deduce the latter from
the position where the ionization started. The operators describing the action of the
measurement conditioned to its result read as
M, = Jion)(g| and M, = |ion)e]| , (39)
which are definitely not projectors. In particular, JWg2 = M? = 0, and the measurement
cannot be repeted, although the system stil exists after the meaurement.

Another example is a photon counter in a given mode of the radiation field. The
absorption of a photon extracts an electron from the detector, which may then be amplified
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and measured. The resulting electric current is proportional to the number of absorbed
photons and can therefore be determined. In all cases, the photons are all absorbed, a
process described by the operators

~

M, = |0)n]| . (40)

Again, these operators are clearly not projectors in the Hilbert space of the radiation
mode. In particular, M2 = 6,0 |0)0].

3.1 Describing a generalized measure from the unitary evolution
of a larger system

In order to describe the most general quantum measurement processes, note that the
measured system cannot be separated from the measuring apparatus. Then, consider a
system of interest S measured by the measuring apparatus M, called the meter. The
meter, which we do not explicitly write here, is either a standard macroscopic measuring
device, or in the case of QND measurements, the same device coupled to the ancilla A.

The system S is prepared in any state |¢) 4 and the meter in the reference state |0),,

(W) seonr = 1) s @10y - (41)

Then, let the system and the meter interact. It generally creates an entangled state,
which can be written, without loss of generality, in the form

W) gors = U W) g = D (Vo [8)5) @ ) (42)

m

where the states |m),, describe an orthonormal basis of the meter’s Hilbert space and

~

My, = a(m| U [0), - (43)
Note that M, is an operator on Es.

The states |m),, represent the set of possible results of a measurement read on the
meter while the so-called Kraus operators M, describe the action of the measurement
process on the system S conditioned to the measurement result read on M. In the case of a
standard von Neumann measurement described by an observable O on Es, these operators
are nothing but the projectors P on the eigensubspaces of O. Here, the operators M,,
are in general not projectors, see the examples above. Note in particular that the number
of such operators is equal to the dimension of the Hilbert space of the meter, dim(&y),
possibly larger than the dimension of the Hilbert space of the system of interest, dim(Eg).
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The operators M, are, however, not completely arbitrary. Indeed, the coupling be-
tween the system and the meter is described by a unitary evolution operator U, thus
preserving the norm of the bipartite state |¥)g.,,. It follows the relation

L= (] [W) = s (] M, M, 1))

since the states |m),, form an orthonormal family. This relation being valid for any state
of the system S, it implies the completeness relation

> MiM,, =1 (44)

m

This identity generalizes the completeness relation on a complete set of orthogonal projec-
tors, Z 77 Z 732 = 14. More precisely, we shall see below that the Kraus operators

M, are the exact counterparts of the projection operators 73 in generalized measurement
theory.

We shall see that generalized quantum measurements are completely determined by the
set of Kraus operators M,,, just as the set of projectors 73 determine PVMs. Generalized
measurements are often called positive operator valued measurements (POVM). Note,
however, that the Kraus operators M,, need not be positive operators. Here the term

"positive” refers to the quantities E, = M Mm, which are indeed positive operators and
are sufficient to determine the measurement probabilities, see below.

3.2 (Generalized measurement of a pure state

Assume that the result of the measurement on the meter is read. This process is described
by a PVM performed on M. Conditional to the measurement result, the state of the meter
is projected onto one or the other of the states |m). According to the collapse principle
applied to S® M, it follows that the after-measurement state is given by the renormalized
projection on |m),,, described by P, =1s® im)(m|,,, i.e.

]\?mW’)S ® |m>M ‘

W,) = (45)

This state being a product state of S and M, the states of both subsystems are well
defined and in particular

_ ]\?m|¢>5

This is the state of S conditionned to the result of the measurement performed on M.

[¥fm) s (46)
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According to the Born rule, the probability of measuring m is

that is _
P = | Nl0)|*] . (48)

Note that it is crucial that the states |m)y; form an orthonormal set. This allows us to
consider them as the results of a standard PVM on the meter, as well as for Eq. (48) to
hold.

Now, if the result of the measurement is unread, the after-measurement state of S is
described by the density matrix

T
=3 P Wi ool = 3 P Mo 10) ¢>'|M , (19)

that is

pl=">" My [)e| M, | (50)

These results directly generalize those of Sec. 1.1 by replacing the projection operators
73 by the Kraus operators M,, or M T depending on whether they are associated to a ket
or a bra. Note that the same result can be obtained by computing the partial trace on
the meter states of the bipartite density matrix after interaction, [¥/)}W’|.

3.3 Generalized measurement of a mixed state

Let us now generalize the notion of POVMs to the case where the system of interest S is
in a mixed state, described by the density matrix

p= ZHH |¢n><wn| . (51)

To simplify the discussion, we shall here use a purification approach. It consists in de-
scribing a mixed state of S as a ket in an extended space. It is easier than the direct
density-matrix approach because the Bayesian inference is built in, as discussed at the
end of Sec. 1.2. Concretely, assume that the system S is in an entangled state with some
environment £,

|qj>S®E = Z Cn |¢n>s ® |Xn>E ) (52)

n

where the coefficients ¢, are such that |c,|*> = II,,, with any phase, and the |y,)’s form
an orthonormal family of £g. We know that we can always do this as long as we only
consider measurements performed on S and not on E since no measurement on S can
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distinguish a mixed state from a state that is entangled with an unobserved system. The
tripartite state before the measurement then reads as

V) sepom = ch!% ® [xn)p ©10) (53)

In practice, E can be a real or fictitious environment of the system. It does not matter
for what follows.

We then perform a measurement on S alone by coupling it to the measuring device.
The tripratite state resulting from the coupling reads as

‘\PI>S®E®M = Z Z Cn (Mm |¢n>s) ® [Xn) g

m n

® |m)y - (54)

Note that we assume here that the measuring device only acts on S, so the interaction
does not affect the environment F. Nevertheless, the entanglement created between S
and M induces an entanglement between E and M. The state of the system S ® F
conditioned to the result of the measurement performed on M reads as

S n (M [90)s) @ Pxn)
Vi) s = ~ :
[ en (M) ) © x|
Tracing over the environment degrees of freedom, we then obtain the density matrix of S

o Z |Cn|2 m [Un X n| MT

(55)

S lenl? (W] MM, 1)
that is
X M, p M},
/0|/m = ot | (57)
Tr(Mm pMm)

The probability of measuring m is

f|zcn( w [Yn)s ) @ Pn)p | = D leal's (ol ML M o) = To(p N, A1)

It yields

Py, = Tr(M,, pM}) = Tr(E,. ) |, (59)

where Em = MLMm

Finally, if the measurement is unread, we find p* = 3" P, x P~ Combining Eqs. (57)
and (59), it yields

=> M, pM]|. (60)
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Of course, the conditional and unconditional operators gj,, [Eq. (57)] and 4" [Eq. (60)]
fulfill all the necessary conditions for being legitimate density matrices, see exercise 1c,
page 21.

Equation (60) is of utmost importance. While it has been found here as a result of an
unread measurement, we shall see later that it is, more generally, the evolution equation
of an open system coupled to an environment.

3.4 Use cases of generalized measurements

We finally briefly discuss some use cases of POVMs. As discussed above, many measure-
ments on individual quantum systems cannot be described by PVMs. Instead, POVMs
provide us with a suitable framework for describing real measurement processes. For
instance, consider again the measurement of an atomic state by position-dependent ion-
ization, as discussed in the introduction of Sec. 3. It can be checked that the operators
M, = lion)g| and M, = [ion)e| introduced in Eq. (39) are legitimate Kraus opera-
tors. Assume that the atom is in any superposition state |¢)) = a/|g) + 5 ]e). The atom
is supposedly measured in the state |g) with probability |a|? and in the state |e) with
probability |]?. This is indeed what is found using the POVM formula of Eq. (48):
P, = |M,[¢) > = |a)? and P, = |M,|¢)) |> = |82 Moreover, whatever the measure-
ment result, the atom is ionized after the measurement, which is well described by the
formula (46):

My
) = Sl o) (61)
|Mg/e’w>‘
Finally, it is straightforward to check that the operators Mg and M, satisfy the complete-
ness relation (44).

This kind of applications is, however, limited in that, if we are not interested in the
system state after the measurement, the measurement results would be just as those given
by standard PVMs. There are in fact many other applications of POVMs. In general,
POVMs only provide partial information about the state of the measured system. This
is due to the fact that the after-measurement states are generally non-orthogonal. Hence,
being in one does not exclude being in the other. An example is provided by the QND
measurement in CQED as discussed in Sec. 2.4. Assume that we do not apply the cavity
Ry. In this case, the final atom-cavity state reads as Eq. (36). If the atom is measured
in |g), the cavity field is projected onto —icx |0) + Se~Tc |1); If it is measured in |e), the
cavity field is projected onto —iar |0) — Be~™7¢ |1). In general, these cavity states are not
orthogonal (In fact, they are orthogonal if and only if |«a|> = |8]|*> = 1/2). This case is
analyzed in detail in problem B.1 on page 21.

Nevertheless, while POV Ms only provide partial information on the state of the system,
one can build many more Kraus operators — as relevant to POVMs — than projectors — as
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relevant to PVMs. Indeed, a PVM can only return a number of different results at most
equal to the dimension of the Hilbert space of the measured system. On the contrary, a
POVM can return a number of different results up to the dimension of the Hilbert space
of the ancilla (or the meter). This allows to accumulate much more information using an
ancilla larger than the system of interest. An application is the discrimation of quantum
states as treated in the problem B.2 on page 23.

A Exercise: After-measurement density matrix

1. (a) Under what conditions is an operator p a density matrix?

(b) Show that the operator p’ in Eq. (6) fulfills all the necessary conditions for
being a density matrix.

(c) Show that the conditional and unconditional operators pj,, and p’ associated
to a POVM, Egs. (57) and (60), fulfill all the necessary conditions for being
density matrices.

2. Derive Eq. (8), and show that one recovers the usual Born rule, Eq. (1), in the case
of a pure state.

3. Prove Eq. (18) ie., for two systems A and B, P; = }(ﬁj’A ® ﬂB)|\P)A®B|2 =

Tr(ﬁjﬁA) for the bipartite state |W)agp = >, o [¥n)a ® |Xn)p Where the |x,)’s
form an orthonormal basis of B.

B Problems

B.1 POVDMs in cavity quantum electrodynamics

Consider the cavity quantum electrodynamics experimental device discussed in Sec. 2.4,
see also Fig. 5. The purpose of this apparatus is to realize a QND measurement of the
radiation field state in cavity C' using a two-level atom A with ground and excited states
|g) and |e), respectively. Here we aim at finding the Kraus operators M, and M, associated
to the measurement of the atom in either state |g) or |e). With respect to the vocabulary
of Sec. 3, the cavity mode plays the role of the system of interest S and the atom that of
the meter M. The cavity mode is initially in the arbitrary state 1)), = «|0) + 3 |1) and
the reference state of the atom (meter) is |e).
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B.1.1 Two-cavity apparatus

Consider first the apparatus restricted to only two cavities, i.e. ignore cavity R,. We have
shown in Sec. 2.4 that the atom-cavity state at the output of cavity C' reads as

|\Ij”>A®C _ —ZOé|g>\—/i_§|e> ® |O> + ﬁefinc |g> — ’e> ® ‘1> ’ (62)

V2

see Eq. (36).

1. Find the expressions of Mg(oz 0) + 1)) and M, (a]0) + B1)).

Hint: Write the atom-cavity state (62) in the form [¥) = |1,),®[g) 4+ [10e) - @ e) 4
and identify Mg/e(a 0) + B ]1)) as in Eq. (42).

2. Deduce the expressions of the Kraus operators Mg and M..
Hint: Write the action of these operators onto the basis states |0) and |1).

3. Check the completeness relation, MgMg + MeT M, = 1. Are these Kraus operators
Hermitian?

4. Compute the probabilities that the cavity has either n = 0 or n = 1 photon,
conditional to the measured atomic state, Pyjg, Foje, Pijg, and Pye.

5. Compute the probabilities P, and P, of measuring the atom in |g) or |e). Does the
measurement of the atomic state yield information about the photon number?

B.1.2 Three-cavity apparatus

Consider now the complete three-cavity problem, including cavity R,. We recall that we
found in Sec. 2.4 that the atom-cavity state at the output of cavity R, reads as

[P") psc = —iar|g) @ |0) — Be™1¢ |e) @ 1) (63)
see Eq. (38).
6. Find the expressions of the operators Mg and M., and check the completeness
relation. Are these operators Hermitian?

7. Compute the probabilities that the cavity has either n = 0 or n = 1 photon,
conditional to the measured atomic state, Pyjg, Foje, Pijg, and Pye.

8. Compute the probabilities P, and P, of measuring the atom in |g) or |e). Does the
measurement of the atomic state yield information about the photon number?
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B.1.3 Incomplete measurement

We now assume that the third cavity realizes and incomplete 7/2 rotation, corresponding
to the transformation

lg) + le)

V2

where u,v € C and |ul? 4 |[v]? =1

lg) —le)
V2

— ulg) +vle) and — v |g) —u*|e), (64)

9. Justify that it corresponds to a rotation on the Bloch sphere. It is not required to
determine which.

10. Write the atom-cavity state \\If”’>A®C after Ry in the form of Eq. (42). Deduce the
expressions of the Kraus operators M and Me, and check the completeness relation.

11. Compute the probabilities of measuring the atom in |g) or |e) as a function of
= |a|* and € = |u|?. Plot P, as a function of P, for various values of € € [1/2,1].

12. Justify that £ = |2¢ — 1| may be called the efficiency of the QND measurement.
Why do we restrict ourselves to e =€ [1/2,1]?7 What would be smart to do for
e€[0,1/2]?

B.2 Discriminating quantum states: PVM versus POVM

Alice prepares a qubit in either states |¢)) or |¢), each with probability 1/2. These two
states are represented by the Bloch vectors 9 or ¢, which make an angle ¢ with each
other. Bob aims at determining with absolute certainty the state prepared by Alice.

1. Assume Bob makes a PVM on the qubit along a vector w

(a) With what probability can he determine the state of the qubit with certainty
if he takes u different from +1) and £¢?

Hint : We recall that the only information we can get about the initial state of
a quantum system is that it cannot be orthogonal to the measurement result.

(b) Same question if Bob chooses u = —t or —¢. How much is it for § = 120°7

2. Assume now that the system is a 1/2 spin and that Bob makes a POVM determined
by the Kraus operators

My =\ —"— (65)
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with & the spin vector operator, u; = —, uy = —¢, and uz = ¥ + ¢. We assume
here # = 120°, so that the u,,’s point towards the vertices of an equilateral triangle
on the Bloch sphere.

(a) Check the completeness relation.
(b) Show that if Bob finds m = 1 or 2, one of the states |¢) or |¢) can be excluded.

(c) Deduce that Bob can determine the qubit state with probability P = 1/2.
Comment.
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