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In the last lecture, we have started the study of open quantum systems, i.e. of sit-
uations where a system S is coupled to another one R, usually assumed to be “large”
in a sense that we will make more precise below. This second large system is called a
reservoir, a bath, or an environment depending on the context.

The important feature we have found is that due to the coupling between S and R,
the system undergoes a non-unitary evolution: even if S is initially prepared in a pure
state, it will gradually evolve towards a mixed state owing to the entanglement between
the system and the reservoir. This non-unitary evolution does not come as a surprise,
as already any non isolated classical system loses energy in the environment through an
energy transfer located on its boundary with the reservoir. This transfer is called heat
in thermodynamics. As we are dealing with a subpart S of the system S + R, which
is isolated, & must be described by its density matrix ps obtained by tracing the total
density matrix psg over the degrees of freedom of the reservoir R: ps = Trgr[psr]-

In the last lecture, we have used the formalism of the Kraus operators to find the
equation of evolution of ps(t). Let us recall the method. We assume that at any time
t, S and R are uncorrelated: psr(t) = ps(t) ® pg', with the reservoir R at equilibrium.
At a later time ¢ + At, the density operator ps(t + At) of the system S alone is related
to its value at ¢, ps(t), by a transformation called a “quantum map”:

ps(t+At) = Ma(Ab)ps(t)ML(AL) (1)

where the M,’s are the Kraus operators, satisfying > MCT!MQ = 1 and acting in the
Hilbert space of S. These Kraus operators M,, the number of which is (dim€s)? (Kraus’
theorem), are the evolution operators of S conditioned on the state a of the reservoir.
The quantum maps is equivalent to the expression we have obtained in Lecture 6, Eq.
(23) in the case of an unread measurement of the state of the system, here by the en-
vironment. A crucial hypothesis for the quantum map of Eq. (1) to be valid is that
dt > 1., where 7. is the typical time necessary for the reservoir to relax to equilib-
rium. This assumption, which we will come back to in this lecture, is called the Markov
approzimation: it tells us that the reservoir has no memory. Amazingly enough, the
quantum map allowed us to derive the general form of the equation of evolution of
ps(t), named the “Master equation”, without even knowing the details of the reservoir
and its coupling to S.



To obtain the master equation, we expanded the M,’s as power series of At, dis-
tinguishing between the case @ = 0 where the environment stays at equilibrium in its
ground state, thus not evolving, and the case a # 0 where the reservoir evolves:

Mo(At) = 1+ (A—iH/R)At+ O(AL?) (2)
Mazo(At) = LoVAL+ O(AL) . (3)

We then obtained the Lindblad form of the master equation, setting At — 0:

d 1 . .
s —[H, ps] + Z(LaPSLL -

A 1 N
= LI Lops — =psLiLy,) . 4
dt  ih < alaps — 5pslyLa) (4)
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The operator H is interpreted as the Hamiltonian of the system, as it describes the
unitary evolution of & when no relaxation occurs. The operators L, are called “jump
operators”. They act in the Hilbert space of the system. Their interpretation is the
following: when the system changes its state, it induces a transition (a quantum jump)
in the reservoir, as represented in the figure below.
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Figure 1: Quantum jumps: the transition of the qubit, considered as the system S, from
state |1) to |0) is associated to an excitation of the reservoir R, supposed here initially
in its ground state |0), to an excited state |c).

Two remarks are in order. First At was chosen such that At > 7.. However, it must
also fulfill At < Ts, where Ts is the typical evolution time of ps. We will come back
to this in the lecture. As, At > 7., we must also remember that the limit At — 0 is
strictly speaking not possible...: the derivative in Eq. (4) thus has to be considered as
a “coarse-grain” derivative. Second, the formalism leading to the Lindblad form does
not yield any expression for the jump operators L. However, as it gives an intuition
of what happens in the reservoir during the jump, one can guess their expression for a
particular situation where we have modeled the reservoir. This is what we did in the
last lecture for an harmonic oscillator coupled to a thermal bath of oscillators.

The goals of this lecture are twofold. First, we will use the Kraus formalism to derive
the Bloch equations that you have encounter in the Light-Matter interaction course, and
which are at the heart of the understanding of how electromagnetic waves interact with



atoms. Second, we will derive the master equation using a different, more traditional,
point of view, sometimes called the “reservoir theory”. As we will see, this approach
gives explicit expressions for the Lindblad operators, and allows one to identify the
relaxation time 7. as the correlation time of the reservoir. The approach is however
technically more complicated than the Kraus formalism which uses general quantum
information theory concepts to obtain in a reasonably straightforward (but arguably
more abstract...) way the Lindblad equation.

1 Derivation of the Optical Bloch equations from
the Kraus formalism

The Bloch equations are essential tools to describe the coupling between an atom and
a classical electromagnetic field. We will here consider as a system S a two-level atom,
with states |g) and |e) separated by a transition at frequency wy, driven by a field at
frequency w. The reservoir R is the quantized vacuum electromagnetic field in which
the atom is placed: it consists of an infinite number of modes [ (frequency w;) that the
atom can decay in. Do not mix the classical EM driving field and the quantized field
responsible for spontaneous emission in a sense that you have seen in quantum optics.

The Hamiltonian of the atom and classical field is, in the rotating wave approxima-
tion (w ~ wp):

huw hQ . .
HS = Toa'z + 75’+6_ZWt + T&_ezwt s (5)
with 6, = |e){e| — |g){g]|, 6+ = |e){g], - = |g){e|]. A useful relation: [6,,5_] = 25,.

The reservoir consists here of the modes of the quantized vacuum field with electric
part E,, considered as harmonic oscillators. The Hamiltonian describing the coupling
between the atom and the quantized field has the general form (see Lecture 2):

Vsr = —d-By =Y (g +g/a} ) (64 +6-) . (6)
l

We need to know the state of the vacuum field (reservoir) at equilibrium at a temperature
around 300 K for the frequency w; around the transition frequency wy. The thermal
populations of the mode [ is

1

n(l) = —————
(1) exp[:l‘;—lT]—l

(7)
For an optical transition Awg ~ 1eV, corresponding to a temperature 7" ~ 12000 K.
Hence ny(T = 300 K) ~ ¢ <« 1: one can assume the modes of the vacuum field to be
initially empty. One has to be careful when deriving the Bloch equation for microwave
transitions: there wg ~ 27 x 1 — 10 GHz, corresponding to a temperature 7"~ 1 K. One
thus has to account for the initial thermal population of the vacuum modes.

Let us know guess the form of the jump operators. In a spontaneous emission
decay, the atom undergoes a transition from |e) to |g), and the reservoir has to be
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excited according to energy conservation. The corresponding jump operator thus has
the form L_ = VT 6_ (remember that the jump operator is associated to a process in
the reservoir, but acts on the system). Here, I is a constant akin to a rate. The reverse
process, by which the reservoir gives energy to the atom, does not occur for an optical
transition, as the reservoir is empty at optical frequencies. Hence we need to consider
only one jump operator and the Lindblad equation reads:

1 ~ ~ —iw * A iw
ps = %[hw()o-z + hQo e + MY 6_e™", ps]

r.. . . .
+§(207080+ —010_ps — pso0-) . (8)

When considering the matrix elements, one obtains the Bloch equations for the popu-
lation p.. = (e|ps|e) and coherence p., = (€|ps|g):

*

pee = _Fpee - 2'56 wtpge + Z'?ezwtpeg (9>
. . I Q.
Peg = _(ZWO + E)peg — iz 2 t(pee pgg) ) (10)

and pgg =1 = pee, Peg = Ppe-

At this stage we have the general form of the Optical Bloch equations, but we do
not know the expression for I'. To get it, consider the case 2 = 0. Then, for an atom
initially in |e), pee(t) = e 1. For I't < 1, pee(t) ~ 1 — I't. We have encountered this
expression in quantum optics: I' is the decay rate of the atom from state |e), obtained
by Fermi’s rule: T' = dZ w{/(3meoc’h).

From equation (10), we also find that when Q = 0 the coherence p,, o e 1t/2 ¢~iwot
decays twice more slowly than the population. It has to be this way: if the population
decays at a rate I', the power emitted by the atom at the beginning of the decay is
dU/dt = —Thwy = —I'U, with U the energy stored in the atom. Physically, the decay
comes from the radiation of the dipole and classical electromagnetism teaches us that
the power emitted by a radiating dipole is proportional to [(d(t))|?. As the dipole {d(t))
associated to a two-level atom is (d(t)) o< pey(t), this means that for U(t) oc e ') we
must get |pe,| oc e7T4/2.

We can recover the same result using another heuristic argument akin to the Wigner-
Weisskopf theory (see Quantum Optics course or Basdevant and Dalibard textbook,
chapter 17, Sec. 3). Assume that initially the (atom+vacuum field) state is [1(0)) =
(a|g) + Ble)) ® [n = 0)g. Here |n = 0)g means that the vacuum field contains no
photon. Assume that after a time ¢, the atom has a probability p to still be in its
excited state and a probability 1 — p to be in |g) having emitted a photon. Then the
(atom + vacuum field) state becomes entangled:

() = alg) @n=0)r+BVple) @ n=0)r + By/1—-plg) @[n=1)r (11)

The density operator of the atom alone is thus

pslt) = Tralluteniu] = (40 LR =P T P) (12)
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As p < e, the coherences decay as \/p o< e /2.

2 Derivation of the master equation using the reser-
voir theory

The Kraus formalism led to the Lindblad form of the master equation with almost no
other inputs than the fact that information flows from the system to the reservoir, which
“reads” the state of the system. We now present a second approach that leads to the
Master equation. As a matter of fact, this is the traditional approach described in almost
all textbooks on the subject. It starts from an explicit modeling of the S + R system.
The method is technically heavy. We will therefore only outline it here. However, it will
allow us to gain a deeper understanding of the Markov approximation, which appears
more explicitly than in the Kraus formalism. Another feature of the method is that it
allows calculating explicitly the various decay rates and the jump operators, contrarily
to the Kraus approach where they have to be guessed.

2.1 Description of the model

The starting point is again a S+R closed (or isolated) system, described by the Hamilto-
nian: H = Hs+ Hr + Vsr, where Vsg is the coupling between the reservoir and the sys-
tem. Here we model the reservoir as a collection of harmonic oscillators. This is actually
quite a general fact that reservoirs can be described in this way: think about spontaneous
emission where the vacuum electromagnetic field is an ensemble of modes equivalent to
harmonic oscillators; this is also the case of phonons in a solid that are quantized vibra-
tions of the crystal. The Hamiltonian of the reservoir is Hg = ), hwld;“dl. We assume
that the frequencies w; are closely spaced, so that they form a quasi-continuum: there
are therefore many Bohr frequencies w,,, = w, — w,, close to the natural frequencies
of the system (for example wy for a two-level atom). To simplify, we will also assume
that the reservoir is initially in its ground state |0),. You will derive in the HW5 the
modification to the formulae below when the reservoir is at thermal equilibrium:

1

1
ed _ = —BHR ATA N —
PR = ¢ with (a}a,) = ] O - (13)
Finally, let us take a generic form for the (system + reservoir) coupling:
Vsr :é®g where R = Zgl&l—l—gl*df . (14)
1

This expression of R would be suitable to describe the quantized electromagnetic field
for which the electric field operator has precisely this form, with g, = \/hw;/(2¢0V) (see
Quantum Optics course or Lecture 2).

2.2 Interaction representation

The dynamics of the density operator psr of the isolated S + 'R system is governed by:

dpsr 1
= _[H . 1
dt ih[ aPSR] ( 5)
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In order to make the influence of the coupling more transparent and simplify a bit the
expressions we will derive, one often uses the interaction representation. It consists in
eliminating the free evolution due to the Hamiltonians Hs and Hr. To do so, one defines

p = eHstir)t/h 5o p e=ilHs+HR)t/h Then, the density operator in the new representation
evolves according to
dp 1
—=—=\V(),p|, 16
L V(D)7 (16)
where
V(t) _ 6i(H5+HR)t/h VSR 6—i(H3+HR)t/h (17)
= R@t)®5(t) (18)
— Z(Qldl e—iwlt + gl*d;- eiwlt) ® eiHst/nge—iHst/ﬁ 7 (19)

l

where we have used exp(iwt aTa) a exp(—iwt a™a) = ae ™" (check it using the closure

relation Y |n)(n| = Id). We will now solve perturbatively equation (16).

2.3 Perturbative solution

The formal solution to Eq. (16) yields:

ﬁwzmm+%/ﬁwmmww. (20)

to

Plugging this expression into Eq. (16) and changing the variable ¢’ to 7 = t — ' leads to:

= Vst~ 5 [ OV, ar (21

We now want to calculate the density operator of the system pg (in interaction repre-
sentation). We therefore trace Eq. (21) over the reservoir:

ddi: = %TrR{[V(t)yﬁ(to)] — % /O C TeR{[V), [V(E— 1), - ) dr . (22)

So far, the result is exact. To calculate the trace, we now assume that at any time the
density operator of S + R is p(t) = ps(t) ® px', with pg' = ]0)(0|z. This is again the
Markov approximation. With this approximation, the first commutator is:

Ter{[V (1), Alto)]} = Ter{ R(t)pR }S()ps(to) — S()ps(to) Ter { R(1)7R} - (23)

The trace over the reservoir is the average of R(t) given by Eq. (19). As we have assumed
pr = |0){0|x and as (0]a;|0) = (0]a;"|0) = 0, we get (R(f))eq = 0 and the commutator
(23) is zero.

The trace of the commutator under the integral is more tedious. It involves four
terms, such as: o o
Trr{R(t)R(t — 7)pr} S(t)S(t — 7)ps(t — T) . (24)
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The trace in each of these terms can be calculated explicitly. It corresponds to the
correlation function of the reservoir (R(t)R(t — 7)):

(ROR(t—T))eq = TYR{R( )R (t — T)p 4
= Z Z glal e iwit + g al+ eiwzt)(gl,dl/ e—iwll(t—T) + gl*/d;lr eiwl/(t—T)»

= Y gl e =g(7). (25)

This correlation function looks like the Fourier transform of the function g;(w;), for which
we had assumed that the frequencies w; of the reservoir form a quasi-continuum. This
function is defined over a broad range of frequencies Aw, which characterizes the width
of the continuum. Hence g(7), Fourier transform of a broad function of w, is a peaked
function of 7 with a width 7. ~ 1/Aw called the correlation time of the reservoir.
It sets the time after which the reservoir has no memory of its initial state. Having
introduced the correlation function of the reservoir and calculating the four terms of the
commutator, Equation (22) becomes:

dpS 1 t—t0

Do = [ drg(r{S®S(t - 7)as(t — 7) — 8(0) sl — )5t — 1)} +he., (26)

where h.c. stands for hermitian conjugate. This integro-differential equation is hard to
solve, but considering the fact that g(7) is peaked and that ps evolves on a timescale
much longer that 7., we set ps(t — 7) = ps(t). Be careful that such an approximation is
a priori not possible in S(t — 7) as it may evolve faster than jg(t). Thus

P L[ arg) (S0 = )is() — S0 iS¢ ~ M} +he. @D

If t — ty > 7., we may replace the upper bound of the integral by +oc. Finally, leaving
the interaction representation to put back the free Hamiltonian evolution yields

d 1 1 A oA N .
TS = —[Hs, ps| + 55 {Ups()S + Sps()U' = SUps(t) = ps(HU'S} . (28)

with

+o0 N
U :/0 g(T)S(—=71)dr . (29)

If we compare now equation (28) with Eq. (4) we find that they have the same structure
with the dissipator LapSLT — —LT Lapg — —pSL L, that can be calculated from the last
term. It has to be done on a case by case basis, for the specific model under consideration.

2.4 Example: spontaneous emission of a qubit

To make things more concrete, let us consider again the case where the system S is
a two-level atom with Hg = hwyd,/2, and the reservoir R is the vacuum field. The
coupling between S and R is electric dipole so that S = &, + 6_. Thus:

U= /0 - g(1)S(=71)dr = B* (G464 +G_6_) (30)



with
1 [T 1 [t

Gy = = g(t)e™™7dr and G_ = = g(r)e™ 7 dr . (31)
We have applied here the following formula that you can check directly by looking at
the action of the operators on states |g) and |e):

exp[—i%&z] o exp[i%&z] =e TG, . (32)
Using the expression (25), we find
G+ — |gl / 72(w0+wl)7 dT _ 0 (33)

g zwg w
G = | ! / ) h2 Z‘gll (5 (,L)l —wo) . (34)

This last expression is nothing but the Fermi’s rule! In the case of spontaneous emission,
g1 = degr/hwi/26V and we obtain G_ = I'/2 = dZ,wi/(6mepc’h).  Combining the
expressions above and inserting them in Eq. (28) leads to:

dps _ 1 AU o

i E.L[Hsyps] +5(20-ps6s = 646-ps = psG46-) . (35)
We have used the fact that 6,6, = 6_6_ = 0. This is nothing but the Lindblad form
of the optical Bloch equations (8), which we have now derived from first principles!

2.5 Discussion of the perturbative expansion

We finally discuss the validity of the perturbative expansion where we have replaced in
Eq. (22) the density operator p(t) by ps(t) ® p%. In doing so, we ignore (i) the correla-
tions between the system and the reservoir, and (ii) the modification of the state of the
reservoir due to its coupling to the system. The introduction of the correlation function
of the reservoir led to the idea that after a typical time 7., the correlations between S
and R have disappeared, and that the reservoir has no memory of any correlations, i.e.
has relaxed to its equilibrium state.

It turns out (and this is not easy to show, see for example Cohen-Tannoudji, Dupont-
Roc and Grynberg, “Atom-photon interactions”, Chapter. IV.D) that replacing p(t) by
ps(t) ® pg introduces an error of order vr./h, with v the order of the magnitude of
the matrix elements of the & — R coupling Vsz. This quantity thus appears as the
small parameter in the problem, and for the Markov approximation to be valid we must
impose:

VT

-c 1. 36
h<< (36)

We therefore obtain a hierarchy in the timescales associated to the relaxation of the
reservoir, 7., the time steps dt used to calculate the evolution of ps, and the typical
evolution time Ts or ps:

T L dt < Ts . (37)
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Let us check that there indeed exists room between 7. and T’s using the following heuristic
argument. To calculate the order of magnitude of Ts, we consider that during the
relaxation time 7. the density operator of the system evolves as ps ~ e /" This
means that during each relaxation time the phase ¢ accumulated by ps undergoes a
random walk with a step d¢ = v7./h. In a time ¢, the number of steps is ¢/7., so that
the variance of the accumulated phase is:

VT2 T
MQN(ﬁ)T_‘ (38)
The evolution time Ts corresponds to the time for which A¢ ~ 1 rad, leading to
Tc
T (39>

Hence 7, and Ty are separated by many orders of magnitude, allowing one to insert the
timescale dt between them.

3 The effective Hamiltonian approach

As already said multiple times, coupling a system S to a reservoir leads to a non-unitary
evolution of the system. We can therefore not define the state vector of S, and have to
resort to its density operator to describe the evolution. The density operator formalism
is usually heavier than the state vector approach, simply by the fact that the number
of coefficients required to describe the state vector of, e.g., N qubits is 2V, while the
density matrix has 22V coefficients. Numerically this is very relevant...

There exists however situations where the description of an open system by a state
vector is a good approximation, albeit at the price of giving up the conservation of
probability for & or equivalently by taking a non-hermitian Hamiltonian to calculate
the evolution of the state vector. Let us illustrate this approach on the case of a two-
level atom driven by a laser and that can spontaneously decay. The Lindblad equation

(4) can be written in the following way, using 6,6 = |e){e| and 6_psd = pee|g)(g]:
_ 1 Al
ps = = Hs — i le){el, ps] + Tpeclg) (gl - (40)

Note that the commutator for two non-hermitian operators is [4, B] = AB — BTAT.
Introducing the effective, non-hermitian Hamiltonian

Al 0 §2p—iwt
Ha = Hs = i 0l = (g 2 10) (a1

2 Wo — 15

and assuming that the system is only weakly excited (p. < 1), the density operator has
an evolution that ressembles the one of a closed system. We thus describe the system S
by a state vector |1hs) = a|g)+ 0 |e), which fulfills the non-unitary Schrédinger equation:

ih % (1)) = Hr 4:s(0)) (42)
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The norm of [is) is not conserved in the evolution... For example, if the system is
not driven (€2 = 0) and the atom is initially in |e), one finds 3(t) = e T2 e~™0t wyhile
a(t) = 0 at all time... the system does decay, as it should, but also disappears... One
must thus use this formalism with care in order to avoid inconsistent results.
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Figure 2: Examples of evolution of a driven two-level system initially prepared in |g), as
a function of time t in microseconds. The upper row shows the coherences af5* for the
effective Hamiltonian approach (thick line) and p., for the solution of the Bloch equa-
tion (dashed line). The bottom row shows the excited state population |3]? (effective
Hamiltonian) or p.. (Bloch equations). (a) Q =21 x 6 MHz, w — wy = 2w x 24 MHz.
(b) =271 x 0.6 MHz, w = wy. (c) Q = 27 x 0.6 MHz, w = wy. The scales vary
depending on the parameters.

Figure 2 shows examples of dynamics under the effective Hamiltonian approach and
the solution of the Bloch equation. The agreement is very good, as expected when the
system is weakly excited.

A Problem set for Lecture 7

A.1 Reservoir in thermal equilibrium

We have seen in the lecture that the correlation function of an initially empty reservoir
is g(7) = (R®)R(E—7)) = >, |g1[*e ™™ (same notations as in the lecture). Assume now
that the reservoir is in thermal equilibrium at a temperature T', described by a density
operator
e_HR/kBT
eq —
Pr Tr[e—Hr/ksT]

1. Show that (ay) = (a}) = 0 and that (a}ay) = ny = 1/(exp[hw,/kgT] — 1).
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. What should be the temperature of the reservoir for n, to be non negligible for

an optical transition and a microwave transition around 10 GHz.

Calculate g(7) for this thermal reservoir as a function of ny,. Does it change
anything in the argument saying that g(7) is a peaked function ?

A.2 Quantum channels

We describe here two processes by which a qubit can lose its coherence. These processes
are called quantum channels.

A.2.1 Spin flips

We assume that the qubit (system §) is coupled to a reservoir R. The hamiltonian
describing the closed & — R system leads to a unitary evolution Ugg. Initially, the
S — R state is [1(0)) = |[vs) ® |xo) with |xo) the state of the reservoir.

1.

We assume that the system has a probability p/3 to undergo a spin flip around
the z,y and 2 axis, corresponding to the action of 0, , .. Each flip leads to a jump
of the state of the reservoir to |x,.,,.). What is the state Ugg |¢(0)) after the flips
as a function of p.

Give the corresponding Kraus operators.

Use the quantum map to calculate the density matrix p’ of the qubit after the
flips.

4. Write the matrix representation of p'.

A.2.2 Dephasing

We now suppose that the qubit can only undergo a phase flip (action of o,) with a
probability p. The state of the reservoir following this is |x.).

1.

Starting from the same state as before, [1/(0)) = |1)s) ® |x0), what is the state of
the S — R system after the flip as a function of p?

Give the corresponding Kraus operators.
Write the density matrix corresponding to the quantum map.
What is the effect of the dephasing if p = 1/27

To understand this, take |1g) = «|0) 4+ 5 |1) and write the state |1)sg) for p = 1/2
in the form |¢gr) = a|0) [po) + B |1) |¢1). Show that |¢g) and |¢1) are orthogonal,

and explain then the loss of coherences.
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A.3 Dephasing of a qubit

We take a qubit [¢)) = «q]0) + B |1), with |0) having an energy Aw(t)/2 and |1) an
energy —hw(t)/2. This frequency varies as a function of time due to fluctuations of the
environment.

1.

Propose a situation involving a fluctuating magnetic field where the scenario ap-
plies.

. Show that the free evolution of the qubit leads to a(t) = age™*®/? and B(t) =

Boe’®/?, with & = fgw(t’) dt'.

We now assume that w(t) varies randomly every time step j of duration 7 by an
amount dw;, around a mean value wy. Justify that the population in the density
matrix are unchanged.

The coherence pg; = (f3*) corresponds to the average over different trajectories.
Show that poi(t) = oy e iwot(emiwiTe=idwaTe=i0wsT ) — ((e~wT))n where n =
t/7 is the number of time steps from 0 to t.

We now assume that the normalized distribution of dw is gaussian: p(dw) =
2 .
L |. Use the integral

_ dw
V2T Aw exp[ 2Aw?
S 2
.2 .2 ™
/ e "’ emxdu:\/—_e 12

[e.9]

to show that po;(t) = B e “ote/T2. Give the expression of Ty as a function of
Aw and 7.

Write the Bloch equations, i.e. the differential equations satisfied by poo, p11, Po1
and p1p when only dephasing is present (the states |0),|1) have infinite lifetime).

We want to recover this equations using the Lindblad formalism. Justify that the
jump operator associated to dephasing is L = ,/70..

Derive the Bloch equations from the Lindblad form. Take for the hamiltonian of
the qubit H = ﬁ%az. What is the link between v and T5?

A.4 Parity measurement and fidelity

We analyze here an experiment performed in 2000 [Nature 404, 256 (2000)] in the group
of D.J. Wineland where the researchers prepared and characterized an entangled state
between 2 ions. We look here only at the characterization of the entanglement. They
used Be™ and two internal state |0) and |1) separated by a transition at a frequency
wo = 2w x 1.25 GHz. The two qubit states can be coupled by laser beams and the
resulting rotation on the qubit state is described by the unitary matrix

1 1 ie'
R0 = = ((he ] )W) , (43)
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Figure 3: Parity signal I1(¢) as a function of the phase ¢ following a rotation R on the
two ions at the same time. From [Nature 404, 256 (2000)].

for a /2 pulse. The phase ¢ of the lasers can be controlled. The authors wanted to
prepare the state [1/,) = (|00) 4 |11))/v/2. The experiment actually prepared a density
matrix Pexp.

1. Explain briefly where the matrix R(¢) comes from.

2. To assess the quality of the state preparation, they measured the fidelity F =
(4] pexp [t04). Show that

1
F= 5( 00 + Pr1) + poo1 (44)
Wlth P()() = po()’oo = <00|p|00> ,PH = p11,11 = <11|p|11>, and p00711 = <00‘p|11>
(which we assume to be real for simplicity).

3. The experimentalists could decide if the state of the ions was |0) or |1). How
could they then measure the probabilities Fyy and P;; by repeating many times
the experiment ? They found Fyy = 0.43 and P;; = 0.46.

4. To measure the coherence pyo 11, they applied the rotation R(¢) on the two ions A
and B at the same time before measuring their state. After this rotation of angle ¢,
they measured the four probabilities Pyo(¢), Po1(¢), Pio(¢), Pi1(¢). Explain briefly
why the probabilities are

Poo(9) (00| R4 (¢) @ R5'(¢) p Ra(d) @ Rp(4)[00) | (45)
Pu(o) = (01| RL(¢) @ RE'(0) p Ra(é) @ Rp(s)|01) (46)
Pio(¢) = (10|R3 () @ R (¢) p Ra(p) @ Re(9)[10) , (47)
Pu(o) = (11|RL(¢) @ R5'(0) p Ra(é) @ Rp(e) |11) . (48)

5. From the probabilities, they calculated the parity signal I1(¢) = Pyo(¢) + Pi1(¢) —
Po1(¢) — Pio(¢). A tedious calculation yields II(¢) = A + 2pgo11 cos(2¢). Explain
briefly how you would do the calculation: calculate for example Py;(¢) + Pio(¢).

6. The measured oscillation is shown in Fig. 3. Extract pgp 11 from it.

13



10.

11.

What is the fidelity of the prepared state then ?

We now show that a fidelity F > 1/2 implies that the state prepared in the exper-
iment is entangled. Suppose first that the experiment produces a pure separable
state of the two ions (a]0) +0 (1)) ® (¢|0) +d|1)), with |a|*+|b]* = |c[*+ |d|* = 1.
Show that F = |ac + bd|*/2.

Use |al® + |b]* = |c|* + |d|* = 1, and write that |a|* + |c|* = (|a| — |¢])* + 2|ac|
(similary for |b]? + |d|?) to show that |ac| + |bd| < 1.

Conclude that F < 1/2 for a separable state and therefore F > 1/2 implies
entangled.

Suppose now that the two-ion state is described by a mixed separable state p =
Yok Pepk (O vk = 1), with py, density matrices of pure separable states. Show that
the fidelity F = >, pi (4] px |¥+) and that F < 1/2. Hence for if F > 1/2, the
mixed state is not separable, i.e. entangled.
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