A Exercise: After-measurement density matrix

1.

(a)

(b)

Under what conditions is an operator p a density matrix?

Solution: An operator p can be interpreted as a density matrix iff and only if
it is Hermitian, semi-definite positive, and of unit trace.

Show that the operator p’ in Eq. (6) fulfills all the necessary conditions for
being a density matrix.

Solution: The operator p’ in Eq. (6),

pl="Y Pilv)(WIP;
j

is clearly Hermitian since projectors are Hermitian operators. It is semi-definite
positive since, for any |¢),

2
>0.

J

(61916) = D~ (G Py lw)IP; 6) = D |(1P;10)

Finally, it is of unit trace: Using an orthonormal basis {|«a)}, we find

Te(p') = Z(alﬁj )| Pyla) = ZZ(@ZJI@ Xl Pjle)

where we use the completeness relation Y |a){a| = 1. Then, using the idem-
potent property and the completeness relation of projectors, 7DJ2 = P; and
>, Py =1, we find

Tr(p’) = (Wlv) =1.

Show that the conditional and unconditional operators pA"m and p’ associated
to a POVM, Egs. (57) and (60), fulfill all the necessary conditions for being
density matrices.

Solution: Let us start with f)"m ,
M,, p M},
Te(M p ML)

A
p|m -

The Hermitian and unit trace characters are obvious. Moreover, for any state
|¢), we have (¢| M,,pM; |¢) > 0 since M |¢) is a ket and j is semi-definite
positive. For the same reason Tr(Mm,ﬁM);) > 0, and we find that ,(3|’m is
semi-definite positive.

Now, we have p’ = > o P X ,6|’m , where P, is the probability of measuring m.
Since probabilities are real, nonnegative numbers and normalized by > P, =
1, we immediately find that p’ is a density matrix.
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2. Derive Eq. (8), and show that one recovers the usual Born rule, Eq. (1), in the case
of a pure state.

Solution: We have
P = ZH i ZH‘ |¢n)|? ZH G 10a)tnl ) = (lpl7)

= Tr(,o i) = r(ﬁﬁj)-

3. Prove Eq. (18) i.e., for two systems A and B, P; = }( A ® ]IB)]\II A®B|

Tr(P]pA) for the blpartlte state [W)ags = Y., Cn [¥n)a ® |Xn)p where the ’Xn>
form an orthonormal basis of B.

Solution: Using the general result for a PVM on A ® B, we find
2
P, = |[(Poa@is) 0| \}j%(Pwm)<®wm4

— Z <¢n|75] X |cn|2 X 'Pj |77/}n> = Tr(PjZ |Cn‘2 |¢n><wn|> _ Tr(?%-,éA) ‘

n

B Problems

B.1 POVDMs in cavity quantum electrodynamics

Consider the cavity quantum electrodynamics experimental device discussed in Sec. 2.4,
see also Fig. 5. The purpose of this apparatus is to realize a QND measurement of the
radiation field state in cavity C' using a two-level atom A with ground and excited states
lg) and |e), respectively. Here we aim at finding the Kraus operators Mg and M, associated
to the measurement of the atom in either state |g) or |e). With respect to the vocabulary
of Sec. 3, the cavity mode plays the role of the system of interest S and the atom that of
the meter M. The cavity mode is initially in the arbitrary state |¢), = «|0) 4+ (1) and
the reference state of the atom (meter) is |e).

B.2 Two-cavity apparatus

Consider first the apparatus restricted to only two cavities, i.e. ignore cavity R,. We have
shown in Sec. 2.4 that the atom-cavity state at the output of cavity C' reads as

no e e e 18) — Je)
|\IJ >A®C - \/5 ® |O> + ﬂ \/§ ® ‘1> ) (62)
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see Eq. (36).

1. Find the expressions of Mg(oz 0) + 1)) and M, (a]0) + B1)).

Hint: Write the atom-cavity state (62) in the form [¥) = |1,),®[g) 4+ [1Ve) o D €) 4
and identify M, (a|0) + 8|1)) as in Eq. (42).
Solution: Starting from Eq. (62), we find

" 1 ; —iw 1 ; —iw
) s = 75— l0) + BT 1) ) @ lg) + =~ ial0) = e 1) ) ®fe)
According to Eq. (42), we then find

My(a]0)+811)) = —= (= ia|0) + ge~ T 1) )

Sl

and

Mo 0) + 511) = (= o) = BT 1) ).

2. Deduce the expressions of the Kraus operators Mg and M,.

Hint: Write the action of these operators onto the basis states |0) and |1).

Solution: The action of Mg/e on the basis states are found by setting, on the one
hand, @« = 1 and § = 0 and, on the other hand, « = 0 and § = 1. It yields

e—inC

V2

~ —1 ~
My |0) = 7 0) and Myje|1) = £ 1)

The Kraus operators are then diagonal and read as

e—inC

Ny = % 0) 0]+ = 1) 1]

3. Check the completeness relation, MgMg + MJ M, = 1. Are these Kraus operators
Hermitian?

Solution: We have
. _'_2 e+inC
M, =210y (0| £+ —— 1) (1] .
g/e 2’ >< | \/5 | >< ’

These Kraus operators are thus not Hermitian. Moreover, we find Mg/eMg/e =
L10X0[ + & [1)(1| = 11, and MM, + MIM, = 1.
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4. Compute the probabilities that the cavity has either n = 0 or n = 1 photon,
conditional to the measured atomic state, Fyg, Foje, Pijg, and Pje.

Solution: If the atom is measured in g, the after-measurement state of the cavity
mode is the normalized state |¢[,) oc M, (a]0) 4 B]1) ), i.e., according to the result
of question 1,

[¥lg) = —ie|0) + B¢ 1)

The probabilities that the cavity has either n = 0 or n = 1 photon, conditional to
the atom be measured in g are thus

Pojg = |Oz|2 and Py = |B|2 )

Similarly, if the atom is measured in e, the after-measurement state of the cavity
mode is the normalized state [¢],) o< M, (a]0) 4+ B1)), i.e.

[¥fe) = —iar|0) — fe™™1e 1),
and the conditional proabilities are again
Pye = |al? and Py =B .
These probabilites are thus independent of the measurement result on the atom.

5. Compute the probabilities P, and P, of measuring the atom in |g) or |e). Does the
measurement of the atomic state yield information about the photon number?

Solution: The probabilities of measuring the atom either in |g) or in [e) are given
by Pyje = |Mgse [¥0) - |?, and, using the result of question 1, we find i.c.

ot s 1

P, =P, .
& 2 2

These probabilities are thus completely independent of the photon state in the

cavity. We thus don’t get any information about the cavity state by measuring the
atomic state in this configuration.

B.3 Three-cavity apparatus

Consider now the complete three-cavity problem, including cavity R,. We recall that we
found in Sec. 2.4 that the atom-cavity state at the output of cavity R, reads as

[P") pgc = —iar|g) @ [0) — Be™¢ |e) @ 1) (63)

see Eq. (38).
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6. Find the expressions of the operators Mg and M., and check the completeness
relation. Are these operators Hermitian?

Solution: We proceed similarly as above. The atom-cavity state is now directly
written as in Eq. (42), and we directly read

Mg(a|0)+B1)) = —ia|0)  and M (a]0) + B[1)) = —Be ™70 [1) .
We thus find M, |0) = —i[0), M, |1) = 0, M, |0) = 0, and M, [1) = —e~*7C [1), i.e.
M, = —il0}0|  and M, = —e T |1)1] .

Clearly, these operators are not Hermitian (except M, for wTp =0 [7]). Moreover,
we find MJM, + MIM. = [0)0] 4 [1)(1| = 1. In fact, we find here that the Kraus
operators are, up to a phase factor, the projectors onto |0) and |1), respectively.

7. Compute the probabilities that the cavity has either n = 0 or n = 1 photon,
conditional to the measured atomic state, Py|g, Foje, Pijg, and Pye.

Solution: If the atom is measured in g, the after-measurement state of the cavity
mode is

) = elelO 2 I) o,
[ty (a]0) + B11))|

where e —ia/|ar|. The probabilities that the cavity has either n = 0 or n = 1
photon, conditional to the atom be measured in g are thus

i0 _

P[)|g:1 and P1|g:O.

Similarly, if the atom is measured in e, the after-measurement state of the cavity
mode is

M (e ]0) + B1))

[¥le) = 1= = 1) ,
[N (a]0) + 511)),
where ¢ = —e=*T¢3/|3|, and the conditional probabilities are

P0|e =0 and P1|e =1.

Hence, in this configuration with three cavities, the photon and atom states are
perfectly correlated.

8. Compute the probabilities P, and P, of measuring the atom in |g) or |e). Does the
measurement of the atomic state yield information about the photon number?

Solution: The probabilities of measuring the atom either in |g) or in |e) are given

by Pyje = |J\?[g/e ) |?, and we find

P, = |af? and P, =|p*.
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Therefore the probabilities of measuring the atom in either g or e are now equal to
the probabilities of having 0 or 1 photon in the initial state of the cavity. Hence the
three-cavity apparatus realizes a perfect QND measurement of the photon number
in the cavity.

B.4 Incomplete measurement

We now assume that the third cavity realizes and incomplete /2 rotation, corresponding
to the transformation

g) +le)
V2

where u,v € C and |u|? + |[v]? = 1.

lg) —le)

N vt lg) —utle), (64)

— ulg) +vle) and

9. Justify that it corresponds to a rotation on the Bloch sphere. It is not required to
determine which.

Solution: Here we are dealing with a two-level system. Its state may be represented
by a unit vector on the Bloch sphere and any unitary operation corresponds to
a rotation. The proposed transformation is clearly unitary since it transforms an
orthonormal basis into another orthonormal basis.

The ideal case as discussed in Sec. B.3 is recovered for v =1 and v = 0.

10. Write the atom-cavity state [¥") ;. after Ry in the form of Eq. (42). Deduce the
expressions of the Kraus operators Mg and ]\Zfe, and check the completeness relation.

Solution: The atom-cavity state after cavity C is given by Eq. (62). Then, the
cavity Ry only acts on the atomic state, yet we have to keep in mind that the cavity
state evolves freely. Applying the transformation (64) to the atomic state and the
transformation |n) — e ™7 |n) to the cavity state, we find

[P") age = —ia(ulg) +vle) ) ®[0) + ' (v [g) —u"le)) ® 1)
where 3 = pe~(Te+Tr) Tt yields
U") soe = (—iau|0) + fv* (1)) @ |g) + ( —iav|0) — fu|1)) @ Je) .
The corresponding Kraus operators are thus
M, = —iu|0)0] + v*e? |1X1]  and M, = —iv|0)0] — u*e? [1)(1] ,
where 0/ = —w(Te + Tg). Moreover, we find
WLVl + BV, = [l 0X0] + ol 1)1] + ol 00| + [uf? 11X1] = 1,

and the completeness relation is fulfilled.
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11.

12.

Compute the probabilities of measuring the atom in |g) or |e) as a function of
Py = |a)? and € = |u|®. Plot P, as a function of Py for various values of € € [1/2,1].

Solution: The probability of measuring the atom in the ground state is P, =
| Mg |) o |?, where [¢), = «|0) + 3]1) is the initial cavity state. It yields

P, = |—iau|0) + Bv* [)> = |af? - [ul* + |B]? - [v*]? = ePo + (1 — €)(1 — Py) ,

that is
Po=FR+(1—-€e(1-2P)=(1—-¢€¢+(2e—1)F .

1.0
— =1
0gl — €=0.75
— £=05
0.6 1
[H]
Q
0.4
0.2
0.0 . . : :
0.0 0.2 0.4 0.6 0.8 1.0

Po

Justify that € = |2¢ — 1| may be called the efficiency of the QND measurement.
Why do we restrict ourselves to ¢ =€ [1/2,1]7 What would be smart to do for
e€0,1/2]?

Solution: The QND measurement aims at measuring the photon number via the
atomic state. In the ideal case, the correspondence woud be

g) «—=10)  and  [e) «—[1) .

The probablity of measuring P, yields a fair estimate of 4y with a relative error
on the slope of |2¢ — 1| = £. It can thus be seen as the efficiency of the QND
measurement.

For e =€ [0,1/2], it is better to invert the state correspondence and use
) e 10 and  Jg) e |1) .
We then use € = 1 — € and the probability of finding the atom in e reads as
Po=1-(1-¢)—2c-1)P=1-)+ 2 -1F .
We then recover the same efficiency as above, € = |2¢/ — 1] = [2¢ — 1].
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B.5 Discriminating quantum states: PVM versus POVM

Alice prepares a qubit in either states [¢)) or |¢), each with probability 1/2. These two
states are represented by the Bloch vectors ¢ or ¢, which make an angle ¢ with each
other. Bob aims at determining with absolute certainty the state prepared by Alice.

1. Assume Bob makes a PVM on the qubit along a vector w different from +1) and
+o.

(a) With what probability can he determine the state of the qubit with certainty?
Hint : We recall that the only information we can get about the initial state of
a quantum system is that it cannot be orthogonal to the measurement result.
Solution: If Bob measures along w different from 4+ and +¢, he can get +1
with nonzero probabilities and he can never conclude with absolute certainty.

(b) Same question if Bob chooses u = —1) or —¢. How much is it for § = 120°7

Solution: Assume Bob measures along —t) and finds +1, he can be sure that
the state was not @ (which is associated to a ket orthogonal to that associated
to —p) and he can safely conclude that the state prepared by Alice was ¢. It
is the only case in which he can conclude and it occurs with probability

1 1—1-
p— 1 « 1=ve
2 2
~—
prob. Alice prepares q’) prob. of then finding +1
that is . 0
P(0) = ——

For 6 = 2x/3 (120°), we find P(27/3) = 3/8 = 0.375.
By symmetry, we obtain a similar result if Bob decides to measure along —a.

2. Assume now that the system is a 1/2 spin and that Bob makes a POVM determined

by the Kraus operators
. /1 - O
M,, = # ’ (65)

with & the spin vector operator, u; = —, uy = —¢, and u3z = ¥ + ¢. We assume
here # = 120°, so that the u,,’s point towards the vertices of an equilateral triangle
on the Bloch sphere.

(a) Check the completeness relation.
Solution: We have



since S0, = 0.
Show that if Bob finds m = 1 or 2, one of the states |¢) or |¢) can be excluded.

Solution: If Bob finds m = 1, then |¢) is excuded. If he finds m = 2, then |¢)
is excluded. If he finds m = 3, he cannot conclude.

Deduce that Bob can determine the qubit state with probability P = 1/2.
Comment.

Solution: The probability to finding a conclusive result is
P = Pp.y X Ppojy + Pap X Ppajg -

Here we have Py., = Pa.y = 1/2 and

Ppayy = W’MQTMNW = (Y|

_ 1+0035(7r/3) _ 1.

We similarly find Pg.j¢ = 1 /2. We find find that the probability of success is
P=1/2.

Hence, POVMs allow us to realize state discrimination with a better success
probability than PVMs.
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