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Quantum Physics relies on a small number of principles and concepts. These have
been developed following a pretty involved inductive process during the first half of
the 20th century, triggered and fueled by experimental findings. Here, we will ignore
this historical process and simply state its outcome in terms of six principles. We will
illustrate them on the example of two-level systems, which will play a central role in
this course as carriers of quantum information.

1 Superposition, states and Hilbert space

The observation of interferences with individual photons and matter-waves made, for
example, of electrons, neutrons or molecules led to the idea that the theory has to fulfill
the superposition principle: quantum systems can be prepared in a superposition of
several states or follow several paths. The mathematical framework naturally including
linear superpositions is linear algebra. Besides, the existence of steady states, i.e. states
that evolve in time but without change in their probability, requires the use of complex
amplitudes in the superposition: Hilbert space, vector space based on C, is then the
appropriate mathematical frame to work with.

Principle 1 (states): the state of an isolated quantum system is fully characterized by
a vector |ψ〉 of an Hilbert space EH. This means that the state vector contains all the
information available on the system.

Any Hilbert space, either of finite or infinite dimension, features countable orthonor-
mal basis {|φn〉}, i.e. basis whose elements are labelled by an integer number n which
runs up to the dimension of the space (it can be infinite). An orthonormal basis fulfills
〈φn|φm〉 = δnm. These are called Hilbert basis. Any vector has a decomposition on such
basis:

|ψ〉 =

dimEH∑
n=1

an |φn〉 , an ∈ C . (1)

Besides, a ket |ψ〉 has an associated bra 〈ψ|. The hermitian product between two vectors
|ψ〉 =

∑
n an |φn〉 and |χ〉 =

∑
n bn |φn〉 is the complex number defined as

〈ψ|χ〉 =
∑
n

a∗nbn . (2)

Two-level systems and qubits. In this course, two kinds of quantum objects will play
a central role: two-level systems and harmonic oscillators. As far as two-level systems
are concerned, examples are many and will be discussed in details in the next lectures:
two states of a spin 1/2, two internal states of an atom or a molecule selected by tuning
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Figure 1: Bloch vector pointing on the Bloch sphere (from Wikipedia).

the frequency of a laser or microwave, quantum circuit with a non-linearity, double-well
potential, polarization of a photon,... In the context of quantum information, the two-
states are labeled |0〉 and |1〉 and they form a basis of a Hilbert space of dimension
2. The superposition of the two is called a quantum bit or “qubit” and its general
expression for any normalized state vector is

|ψ〉 = cos
θ

2
|0〉+ sin

θ

2
eiϕ |1〉 . (3)

Hence, the state is fully determined by two angles θ and ϕ, in the same way any unit
vector u in R3 is defined by its spherical coordinates. This mapping between the qubit
state and a vector on a unit sphere allows one to represent a superposition state, as
shown in Fig. 1: in this context, the vector u(θ, ϕ) is called the “Bloch vector” and the
sphere is named the “Bloch sphere”. For example, the states |0〉 and |1〉 are represented
by the two poles, while the state (|0〉+ |1〉)/

√
2 points along x and (|0〉+ i |1〉)/

√
2 along

y. Keep in mind that even if we use here the vocabulary of quantum information, all
the properties of qubits are generic of any two-level systems.

The link between the hermitian product of two states |ψ〉 and |ψ′〉 and the scalar
product of the two corresponding Bloch vectors u and u′ deserves some caution: taking
ϕ = ϕ′ = 0, one finds 〈ψ|ψ′〉 = cos[(θ − θ′)/2] but u · u′ = cos(θ − θ′). Hence, two
orthogonal states have opposite (i.e. non orthogonal...) Bloch vectors.

2 Observables

Classically, any physical system is described by variables that one can measure, called
observables. Examples are position, momentum, angular momentum, energy, dipoles,
electric field... The corresponding quantum description is given by the second principle:
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Principle 2 (observables): any observable A of a quantum system is described by an
hermitian operator Â acting in the Hilbert space describing the system.

Recall that hermitian implies the following relation between the matrix elements:
〈ϕn| Â |ϕm〉 = Anm = A∗mn, i.e. the adjoint operator Â† = Â. Mathematically, there is
a difference between auto-adjoint and hermitian for infinite dimension. As it has very
little practical consequence, we will ignore this.

For any hermitian operator Â there exists an orthonormal basis {|φn〉} where the
operator is diagonal, the associated eigenvalues an being real. This important property
is the reason for imposing that observables are hermitian operators: as we will see in
the next section, any measurement on an observable yields one of its eigenvalues, which
must be real for the theory to be meaningful. Imposing hermiticity for the operator au-
tomatically fulfills this. The spectral decomposition of the operator in terms of projectors
follows:

Â =
∑
n

anP̂n, with P̂n = |φn〉 〈φn| , (4)

when the eigenvalues are not-degenerate. For degenerate eigenvalues (degeneracy gn):

P̂n =

gn∑
α=1

|φαn〉 〈φαn| . (5)

In both cases,
∑

n P̂n = Îd. Finally, the average value of an observable for a quantum

system in a state |ψ〉 is 〈Â〉 = 〈ψ| Â |ψ〉, and its variance (∆A)2 = 〈ψ| (Â− 〈A〉)2 |ψ〉 =
〈Â2〉 − 〈Â〉2 = ||(Â− 〈A〉) |ψ〉 ||2.

Case of a two-level system. The most general matrix expression of an observable
acting in a Hilbert space of dimension 2 (basis {|0〉 , |1〉}) is:

Â =

(
a b− ic

b+ ic d

)
=
a+ d

2
Îd + b

(
0 1
1 0

)
+ c

(
0 −i
i 0

)
+
a− d

2

(
1 0
0 −1

)
(6)

with a, b, c, d real numbers. Any observable can thus be decomposed on the identity
operator and the three Pauli matrices σ̂i’s defined by:

σ̂x =

(
0 1
1 0

)
σ̂y =

(
0 −i
i 0

)
σ̂z =

(
1 0
0 −1

)
. (7)

Be aware that the Pauli operators have different notations in the litterature: σx,y,z =
σ1,2,3 = X, Y, Z.

Properties of Pauli operators. Show that:

1. σ2
i = Id,

2. Tr(σi) = 0,

3. [σx, σy] = 2iσz and all the circular permutations.

4. The eigenvalues of the σi’s are ±1
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5. The eigenstates of the σi’s are respectively (|0〉 ± |1〉)/
√

2, (|0〉 ± i |1〉)/
√

2, (|0〉 , |1〉)
(represent them on the Bloch sphere).

Spin 1/2 and Bloch vector. Consider a spin-1/2 particle such as the electron. The
spin operator is related to the Pauli matrices by Ŝ = (~/2)σ. Prepare the spin state
of the electron in |ψ〉 = cos θ

2
|↓〉 + sin θ

2
eiϕ |↑〉, associated to the Bloch vector u(θ, ϕ).

Show that 〈ψ|Ŝ|ψ〉 = (~/2)u. Hence, one way to visualize the Bloch vector of a qubit
is to associate the qubit to a spin 1/2 and think about the direction of the average spin
〈Ŝ〉, or equivalently of its magnetic moment µ ∝ 〈Ŝ〉.

3 Measurements

Any physical theory has to define rules on how to compare its predictions to the outcome
of an experiment. Quantum physics has it special that the outcome of any experiment is
probabilistic, and as far as we know today this is fundamental: contrarily to statistical
physics where probabilities are used to hide our lack of knowledge about the details
of the system, the result of a measurement in quantum physics is intrinsically random
and we do not believe that we will ever find a more profound deterministic theory from
which the quantum probabilities will emerge.

Generally speaking, we expect from a measurement of an observable Â (classical or
quantum) that if we repeat it a second time immediately after the first one we find the
exact same result. Otherwise the measurement process is not meaningful. This means
that if the state of the system after the first measurement is |ψa〉, the variance on the
results for Â following a second measurement performed right after is (∆A)2 = 0, with
an average value 〈Â〉. Therefore:

(∆A)2 = ||(Â− 〈Â〉) |ψa〉 ||2 = 0⇒ Â |ψa〉 = 〈Â〉 |ψa〉 , (8)

and the state |ψa〉 is an eigenstate of Â, the average value being an eigenvalue of Â.
These considerations lead to the measurement principle.

Principle 3 (projective measurements): the result of a measurement of the observ-
able Â on a quantum system in a state |ψ〉 can only be one of the eigenvalues an of Â.
The state of the system immediately after the measurement is the projection of |ψ〉 on
the subspace En associated to the eigenvalue an:

|ψ〉′ = P̂n |ψ〉
||P̂n |ψ〉 ||

. (9)

The probability to get the result an is pn = 〈ψ| P̂n |ψ〉 (Born’s rule). In the simplest
case of a non-degenerate eigenvalue pn = | 〈ψn|ψ〉|2.

The average value of an observable Â is then 〈Â〉 =
∑

n anpn, and follows also directly
from the spectral decomposition (4).

Let us again emphasize how weird a quantum measurement process is. One would
expect that by measuring a quantum system, one would get its state before the mea-
surement. However this is not the case: the only thing we know with certainty is the

4



state after the measurement. This fact is the basis of the preparation of a quantum
system in a given state by performing a projective measurement (initialization by mea-
surement). The only information that we obtain about the state of the system before
the measurement is the following: if, by measuring an observable Â, we obtain the result
an associated to the eigenstate |φn〉, this tells us that the state before the measurement
is not orthogonal to |φn〉. This does not look like a lot of information and yet, as we
will see in the next lectures, this has fundamental consequences.

Quantum projection noise. To obtain experimentally the probabilities pn, one re-
peats N times the same experiment and counts the number of times Nn one gets
an. Then Nn/N → pn for large N . However, an intrinsic error noise is associated
to a measurement. Consider for example the qubit state |ψ〉 =

√
p |0〉 +

√
1− p |1〉.

Each time one repeats the measurement on a system prepared in |ψ〉 one obtains ran-
domly |0〉 (probability p) or |1〉 (probability 1 − p), and each outcome is independent
from the previous one. This is exactly like flipping a coin or undergoing a random
walk in one dimension. The distribution of results is given by the binomial distri-
bution: after N repetitions of the measurement we obtain the result |0〉 N0 times,
with a probability P0 =

(
N
N0

)
pN0(1 − p)N−N0 . There, the probability p is estimated by

p ≈ N0/N . The average value of N0 is 〈N0〉 ≈ Np and the associated standard deviation
is ∆N0 =

√
Np(1− p). This deviation is called the quantum projection noise and is

intrinsic to the measurement process.

Measurement on a qubit. Take a qubit defined by a Bloch vector u(θ, ϕ), and
measure its state along the axis m. Show that p0,1 = (1±m · u)/2.

Despite the apparent “simplicity” of the projective measurement postulate, we can
already guess that it has to contain subtleties and that it can not be the full story.
For example, when we say that the state of the system after the measurement is the
eigenstate associated to the eigenvalue of a given observable, we implicitly assume that
the system still exists after the measurement. But this is often not the case ! Consider
for example the measurement of the position of an atom by ionization with a laser.
After the measurement, the atom does not exist any longer, as it is now an ion, and
the electron emitted is what we actually detect by electronic amplification: the state of
the atom after ionization is then meaningless. This example shows that one needs to
consider the role of the measuring device in a measurement process. We will come back
to all these in the next lectures.

4 Evolution of quantum systems

In classical physics, the evolution of a system is described by “equations of motion” such
as Newton’s laws in mechanics or Maxwell’s equations in electrodynamics. Usually, they
can be derived from the Lagrangian or Hamiltonian of the system (which are actually
inferred from the equations of motion...). This is also the case in quantum physics,
where the knowledge of the Hamiltonian , i.e. the operator associated to the energy,
is enough to calculate the evolution of the system. This is true even when including
special relativity (Dirac equation). Of course, the Hamiltonian of a system may not be
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easy to write, but it does exists as it is the operator associated to its energy...

Principle 4 (evolution): The evolution of the state of a isolated system is governed
by the Schrödinger equation involving the Hamiltonian operator Ĥ(t):

i~
d

dt
|ψ(t)〉 = Ĥ(t) |ψ(t)〉 . (10)

A direct consequence of this equation and of the hermiticity of Ĥ(t) is the con-
servation of the norm of any state vector under a temporal evolution: 〈ψ(t)|ψ(t)〉 =
〈ψ(0)|ψ(0)〉. This fact implies the existence of a unitary operator Û(t), i.e. such that
Û † = U−1, transforming |ψ(0)〉 into |ψ(t)〉: |ψ(t)〉 = Û(t) |ψ(0)〉. The operator Û(t) is
called the evolution operator. When the Hamiltonian is time-independent, the evolu-
tion operator has a simple expression: Û(t) = exp[−i(Ĥ/~)t]. As a consequence, the
evolution of a state |ψ(0)〉 =

∑
n cn |φn〉, with H |φn〉 = En |φn〉, is

|ψ(t)〉 =
∑
n

cne
−iEn

~ t |φn〉 . (11)

In the general case of a time-dependent Hamiltonian, Û(t) evolves according to:

i~
∂Û(t)

∂t
= Ĥ(t)Û(t) . (12)

The temporal evolution of the average value of an operator Â, 〈Â〉(t) = 〈ψ(t)|Â|ψ(t)〉,
is governed by Ehrenfest’s theorem:

d〈Â〉
dt

=
1

i~
〈[Â, Ĥ]〉+ 〈∂Â

∂t
〉 (13)

Importantly, the temporal evolution of the state vector and of the average value of an
observable is fully deterministic: the probabilistic nature of quantum physics mentioned
above is only associated to the measurement process itself, not to the evolution before it.
Besides, the measurement process described by the projective measurement postulate
is generally speaking not reversible. This means that you can not construct a unitary
operator Û associated to a measurement. If you could, it would have to fulfill the
following properties: for two arbitrary states |φ1,2〉, Û |φ1,2〉 = |φ1,2〉 and Û(|φ1〉+|φ2〉) =
|φ1〉 or |φ2〉. But this is not possible for a linear operator... The question of how to
reconcile the unitary evolution of a superposition state with the existence of one (and
only one...) particular outcome in an experiment is called the “measurement problem”.
It is still the subject of passionate debates, even if everyone agrees with the mathematical
rules associated with the non-unitarity of a projective measurement.

Evolution of a two-level system: Rabi oscillations. Consider first the case of two
states |0〉 and |1〉 separated by an energy ~|∆|, governed by an Hamiltonian

H =
~
2

(
∆ Ω e−iϕ

Ω eiϕ −∆

)
. (14)
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The quantity Ω is called the Rabi frequency. This form is actually general and applies
to many situations such as a spin 1/2 placed in a magnetic field with a longitudinal
and transverse component or the driving of a two-level atom by an electromagnetic field
in the rotating-wave approximation (see Exercise A.2 and Lecture 2). If the system
is initially prepared in |ψ(0)〉 = |0〉, the probability p1 to measure it in |1〉 after an
evolution time t is given by the Rabi formula:

p1(t) =
Ω2

Ω2 + ∆2
sin2

(√
Ω2 + ∆2

t

2

)
(15)

To demonstrate this expression, decompose |ψ(0)〉 onto the two eigenstates |±〉 of H
with energies ±~

√
Ω2 + ∆2/2 and evolve the state according to Eq. (11).

To interpret this evolution in terms of a motion on the Bloch sphere, let us recall
that the Bloch vector is u = 〈σ〉. Applying Ehrenfest’s theorem, one gets (for ϕ = 0)

d〈σ〉
dt

= Ω× 〈σ〉 with Ω =

Ω
0
∆

 . (16)

Hence, the Bloch vector precesses around the vector Ω, at a rate |Ω| = ΩR =
√

Ω2 + ∆2.
Let us consider now the important case where ∆ = 0, which gives

H =
~Ω

2
(cosϕ σ̂x + sinϕ σ̂y)⇒ Û(t) = cos

Ωt

2
Îd− i sin

Ωt

2
(cosϕ σ̂x + sinϕ σ̂y) (17)

Therefore, starting from the state |0〉, we obtain

|ψ(t)〉 = cos

(
Ωt

2

)
|0〉 − i sin

(
Ωt

2

)
eiϕ |1〉 . (18)

More generally, for H = ~ΩR

2
σ · n, one gets:

Û(t) = cos

(
ΩRt

2

)
Îd− i sin

(
ΩRt

2

)
σ · n = Rn(α) . (19)

with n = Ω/ΩR a unit a vector. This unitary operator is a rotation around the axis n,
with an angle α = Ωt/2.

Application to single qubit gates. The expression (19) allows one to calculate single-
qubit gates commonly used when coherently manipulating qubits. These are (i) the
Z-rotation: n = z,Ωt = π,∆ = 0 leading to Û = −iẐ; (ii) the X-rotation: n = x,Ωt =
π,∆ = 0 leading to Û = −iX̂; (iii) the Hadamard gate n = (x+z)/

√
2,Ω = ∆,ΩRt = π

leading to:

Û =
1√
2

(
1 1
1 −1

)
. (20)
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5 Tensor product states and entanglement

All quantum systems are in fact composed of several subparts that interact with each
other: simply think of an atom consisting of electrons, protons and neutrons. More
generally, an isolated system is always an idealization of a real-life situation where
the quantum system is coupled (even if it is very weakly) to an environment, which
we have to describe to understand the behavior of the system. Also, in describing a
measurement process, one has to consider the system coupled to the measuring device
(we will come back at length to these questions later in the course). A single system
can also have several degrees of freedom: position and spin for atomic particles, photons
with a propagation mode and a polarization mode, photon with two propagation modes...
Each of theses modes, degrees of freedom or subparts are described by an Hilbert space,
and the question is how to combine them to describe the whole system.

Principle 5 (tensor states): The Hilbert space describing a composite system A+B
is the tensor product of the Hilbert spaces describing each: EH = EA ⊗ EB.

The basis of EH is the tensor product of the basis of EA ({|a〉}) and EB ({|b〉}):
{|a〉⊗|b〉}. As a consequence, dimEH = dimEA×dimEB. Any vector of EH has the form:

|ψ〉 =

dimEA∑
a=1

dimEB∑
b=1

cab |a〉 ⊗ |b〉 . (21)

Importantly most of them are not of the form |φA〉 ⊗ |χB〉. Tensor states are often
written in a simplified way |φA〉 ⊗ |χB〉 = |φA, χB〉 (be careful with the order!).

Case of two-level systems. Take two qubits of the form |φA〉 = α |0〉 + β |1〉 and
|χB〉 = γ |0〉+ δ |1〉. Then:

|φA〉 ⊗ |χB〉 =


αγ
αδ
βγ
βδ

 . (22)

The dimension of the Hilbert space is 4. Had we considered N qubits, the tensor Hilbert
space would have had a dimension 2N , i.e. an exponential scaling with the number of
constituents.

Operators in tensor spaces. By definition:

[Â⊗ B̂] |φA〉 ⊗ |χB〉 = [Â |φA〉]⊗ [B̂ |φB〉] (23)

As an example, the matrix of the tensor operator is thus:

for Â =

(
α β
γ δ

)
then Â⊗ B̂ =

(
αB̂ βB̂

γB̂ δB̂

)
. (24)

Measurement with tensor states. The projective measurement principle 3 applies
here. A subtlety arises when one is only interested in a measurement on a subpart of
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the system. Assume you measure an observable Â of a composite system A + B. The
probability to obtain the result a (one of the eigenstates of Â) is obtained by applying
the principle 3 using the projector: P̂a = |a〉〈a| ⊗ ÎdB, indicating that one measures on
A, leaving B untouched.

Entanglement. As we noticed above, most of the states of a composite system A+B
are not factorizable in the form |φA〉 ⊗ |χB〉. Any state that can not be written in this
form, i.e. non factorizable, is said to be entangled.

We will devote a lot of time in this course to entanglement, but let us first take a
simple example for two qubits. Show first that the states (|00〉 ± |11〉)

√
2, and (|01〉 ±

|10〉)
√

2 are entangled. These four states form a basis of the Hilbert space describing
the two qubits. They are call Bell’s states.

The main property of entangled states is the existence of strong non-local correlations
between their constituents. Take again the Bell state (|00〉 + |11〉)

√
2 and show that:

p(A : 0) = 1/2, p(A : 0, B : 0) = 1/2, but that the conditional probability p(B : 0|A :
0) = 1. Hence, when prepared in this Bell state, the outcome of measurements on A
and B are perfectly correlated. Although already weird, this alone is not unknown to
the classical world: two classical objects possessing a given property can be correlated.
Take for example two balls, one red the other one blue. If I hand you the red one, you
know for sure that I have the blue. However, in quantum physics, the violation of Bell’s
inequalities (see Lecture 3) tells us that the quantum correlations are stronger than the
classical ones.

The experimental preparation of high quality entangled states is very challenging
and is one of the main endeavor for experimentalists working on quantum technologies.
Besides, the characterization of entanglement is even more challenging. We will discuss
this at several occasions during the course. As for the generation of entangled states,
it can be obtained by combining the single qubit gates that we described in Sec. 4 and
so-called two-qubit gates. These gates feature two inputs and two outputs. One input
is called the target and the other one the control. Assume for example that you know
how to realize a CNOT (controlled NOT) gate whose matrix is given by:

U
(2)
CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (25)

Combine the Hadamard gate and the CNOT gate to generate the Bell’s states. We will
see in Lecture 2 how to realize a CNOT gate in practice.

No-cloning theorem. As an application of tensor states, let us demonstrate a theorem
with implications for quantum communication. It was introduced in the early 80’s by
Wootters and Zurek and states that one can not copy an unknown quantum state |ψ〉
without destroying it. Assume you could. This would mean that if you have two qubits,
one in state |ψ〉, the other in state |0〉, you could construct a unitary operator Û such
that Û(|ψ〉 |0〉) = |ψ〉 |ψ〉. By considering two non-orthogonal states |ψ〉 and |φ〉 and the
fact that Û conserves the hermitian product, show that this is not possible

Identical particles: fermions and bosons. The last principle of quantum physics
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deals with the fact that all particles that we know of fall in two categories, called
fermions and bosons. Their defining property is that their state behaves differently in
a permutation of two of them when they are identical, i.e. their quantum numbers are
all the same (spin, position, momentum, charge, mass, angular momentum...).

Principle 6 (symmetrization): The quantum state |ψ(1, 2)〉 of two identical bosons
is symmetric under the permutation of the two, i.e. |ψ(1, 2)〉 = |ψ(2, 1)〉. The quantum
state |ψ(1, 2)〉 of two identical fermions is anti-symmetric under the exchange of the two,
i.e. |ψ(1, 2)〉 = − |ψ(2, 1)〉.

This distinction between fermions and bosons is only relevant when you consider at
least two of them, as you need at least two particles to apply a permutation. This is
why we discuss it in the section dealing with composite systems and tensor product.
As an example, take two orthogonal states |a〉 and |b〉 and two particles 1 and 2. A
possible two-atom state is |1 : a〉 ⊗ |2 : b〉. This is a perfectly suitable state if the two
particles are not identical. However this is not a physically acceptable state to describe
two identical particles: the symmetrization principle states that of all the possible tensor
states you can form, only a very limited subset is possible, namely the ones symmetric
and anti-symmetric under a permutation. Hence, here, |ψB(1, 2)〉 = (|1 : a; 2 : b〉 +
|1 : a; 2 : b〉)/

√
2 for bosons and |ψF(1, 2)〉 = (|1 : a; 2 : b〉−|1 : a; 2 : b〉)/

√
2 for fermions.

It turns out also that fermions carry semi-integer spin (1/2, 3/2, 5/2...), while bosons
have integer spins (0, 1, 2, 3...). This is a consequence of the spin-statistics theorem, but
even more, this is an experimental fact... Fundamental constituents of matter (electrons,
protons, neutrons) are fermions with spin 1/2, while particles mediating fundamental
interactions (such as photons, gluons, W±, Z0) are bosons. Assembling an odd number of
fermions makes a fermionic particle, while assembling an even number makes a bosonic
one. This is why atoms can be either bosons or fermions depending on the isotope.

References: J.L. Basdevant, J. Dalibard, “Mécanique quantique”, Ellipse
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A Problem set for Lecture 1

A.1 Some derivations...

Properties of Pauli operators. Show that:

1. σ2
i = Id,

2. Tr(σi) = 0,

3. [σx, σy] = 2iσz and all the circular permutations.

4. The eigenvalues of the σi’s are ±1

5. Find the corresponding eigenstates of σ̂i’s. Represent them on the Bloch sphere.

Spin 1/2 and Bloch vector. Consider a spin-1/2 particle such as the electron. The
spin operator is related to the Pauli matrices by Ŝ = (~/2)σ. Take a unit vector u with
spherical coordinates (θ, ϕ) and construct the operator Ŝu = Ŝ · u.

1. Calculate the eigenvalues and eigenvectors of Ŝu.

2. Show that u〈+|Ŝ|+〉u = (~/2)u.

Measurement on a qubit. Take a qubit defined by a Bloch vector u(θ, ϕ), and
measure its state along the axis m. Show that p0,1 = (1±m · u)/2.

Ehrenfest’s theorem. Demonstrate the theorem.

Evolution operator. Take H = (~Ω/2)σ̂x and demonstrate that the corresponding
evolution operator is:

Û(t) = cos

(
Ωt

2

)
Îd− i sin

(
Ωt

2

)
σ̂x . (26)

Rotation operator. Take H = (~Ω/2)σ̂z and assume the initial state of a qubit to
be |ψ(0)〉 = cos(θ/2) |0〉 + sin(θ/2) |1〉. Calculate the state |ψ(t)〉 and show that the
evolution corresponds to a rotation of the Bloch vector around the ẑ axis with angle Ωt.

A.2 Rabi oscillations (very important: part of the lecture!)

Consider two states |0〉 and |1〉 separated by an energy ~ω0. The qubit is driven by a
coupling oscillating in time with the frequency ω: think of a two-level atom driven my
a laser or a spin 1/2 placed in a rotating magnetic field. The Hamiltonian is:

H = −~ω0

2
σ̂z + ~Ω cosωt σ̂x = ~

(
−ω0/2 Ω cosωt

Ω cosωt ω0/2

)
|0〉,|1〉

. (27)

We want to calculate the state |ψ(t)〉 of the qubit after an evolution time t. As the
Hamiltonian is time-dependent, the usual method leading to Eq. (11) does not work.
However, we will see that using a unitary transform, equivalent to working in the frame
rotating at the frequency ω, and a near-resonant approximation (called the rotating
wave approximation), the Hamiltonian can be made time-independent.

11



1. Introduce the state |ψ̃(t)〉 = R̂(t) |ψ(t)〉 with

R(t) = exp[−iωt
2
σ̂z] =

(
e−i

ωt
2 0

0 ei
ωt
2

)
|0〉,|1〉

. (28)

Using the general expression of a qubit (Eq. 3) to explain why this transformation
amounts to applying a rotation around the Oz axis of angle −ωt, and “to move
to the frame rotating at frequency ω”.

2. Show that the new states |ψ̃(t)〉 is solution of the new Schrödinger equation

i~
d

dt
|ψ̃(t)〉 = H̃(t) |ψ̃(t)〉 with H̃ = RHR−1 + i~

dR
dt
R−1 . (29)

3. Show that:

H̃ =
~
2

(
∆ Ω (1 + e−2iωt)

Ω (1 + e2iωt) −∆

)
|0〉,|1〉

, (30)

with ∆ = ω − ω0 the detuning.

4. This new hamiltonian is still time-dependent. However, the terms e±2iωt oscillate
rapidly with respect to all the other frequency scales ∆ or Ω in the problem, and
can therefore be neglected. Apart from a numerical simulation to check this, it
is not so easy to justify precisely this fact. However, the following hand-wavy
argument helps. Take |ψ̃〉 = c0(t) |0〉 + c1(t) |1〉. The Schrödinger equation (29)
reads

ċ0 = −i∆
2
c0 − i

Ω

2
(1 + e−2iωt)c1 (31)

ċ1 = i
∆

2
c1 − i

Ω

2
(1 + e2iωt)c0 . (32)

If Ω � |∆|, the second equation gives c1(t) = αei∆t/2 (α is a constant) and the
first equation becomes

ċ0 ∼ −i
∆

2
c0 − i

Ω

2
(1 + e−2iωt)ei

∆t
2 α , (33)

which can be solved by using the variation of constant method. Write c0(t) =
A(t) e−i∆t/2. Then Ȧ = −iΩ

2
(1 + e−2iωt)ei∆tα, and

A(t) ∼ −iΩ
2

[
ei∆t − 1

i(ω − ω0)
− e−i(ω+ω0)t − 1

i(ω + ω0)

]
. (34)

Explain then why, in the near resonant case |ω − ω0| � ω + ω0, one can neglect
the rapidly oscillating factor e±2iωt in H̃.

5. We are now back to a time-independent Hamiltonian

H̃ =
~
2

(
∆ Ω
Ω −∆

)
. (35)

Calculate the eigenenergies of H̃, and the eigenstates as a function of θ, where we
have used: cos θ = ∆/

√
Ω2 + ∆2 and sin θ = Ω/

√
Ω2 + ∆2.
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6. At t = 0 the qubit is in state |0〉. Calculate |ψ̃(t)〉.

7. Calculate the probability p1(t) to find the qubit in state |1〉 after a time t, and
recover the Rabi formula

8. Plot p1(t) for ∆ = 0 and ∆ = 3Ω.

9. Plot the envelop pmax
1 of p1(t) as a function of ∆. Comment.

A.3 Inhibiting the evolution by measuring: the quantum Zeno
effect

Consider the evolution of a qubit initially in |0〉, described by the Rabi formula with
∆ = 0.

1. What is the probability to find the qubit in |0〉 after a time δt = T/N for N � 1 ?

2. What is the probability to still find the system in |0〉 after N consecutive mea-
surements performed every δt ?

3. What is the probability to find the qubit in |0〉 after a time T when N →∞ ?

4. Compare to the case where you let the system evolve without measuring between
t = 0 and t = T . Explain the effect in terms of the quantum measurement process.

A.4 Entangling gates

Assume you know how to realize the two-qubit π-phase gate represented by the matrix:

U (2)
π =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 . (36)

1. Prepare the target and control qubits in (|0〉 + |1〉)
√

2. Calculate the two-qubit
state at the output.

2. Is it an entangled state and why ?

3. Consider the elementary quantum circuit shown in Fig. 2. Show that it is equiva-
lent to a CNOT gate.

4. Take N target qubits and one control qubit. Draw a circuit involving CNOT gates
only allowing you to prepare a N + 1 Greenberger-Horne-Zeilinger state

|GHZ〉 =
1√
2

(|0, 0, 0...〉+ |1, 1, 1...〉) . (37)
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t
<latexit sha1_base64="o7TF1PAm7B4rO2av+b3xoVq+GW0="></latexit>

U
(1)
H

<latexit sha1_base64="o7TF1PAm7B4rO2av+b3xoVq+GW0="></latexit>

U
(1)
H

<latexit sha1_base64="RpLGe1fwxaWNSsX2X72XNnKblUg="></latexit>

U (2)
⇡

Figure 2: Quantum circuit to produce a CNOT gate from a π-Phase gate. Here U
(1)
H is

the Hadamard gate; c, t are the control and target qubits.
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