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In Lecture 3, we have studied the basic properties of entangled, i.e. non separable,
states. We have in particular seen that entanglement implies abandoning local realism
in the sense that the subparts of the system do not have defined properties before a
measurement. Moreover, entangled states feature non-local correlations between their
subparts. These correlations are stronger than any classical correlations, as demon-
strated by the violation of the Bell’s inequalities. We have also seen that these quantum
correlations could be used as a resource (teleportation, quantum computation, quantum
metrology...).

In this lecture, we will address the difficult question of how to quantify entanglement.
To see why this question arises, consider the entangled two-qubit states:
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Intuitively, the second one seems closer to a separable state than the first state when
€ < 1, but can we make this intuition quantitative ? Also, at a fundamental level, a
system is generally not in a pure state (see below) but rather described by a density
operator: how can we define entanglement in this case ? Although some criteria exist,
as we will see, the quantification of entanglement remains an outstanding problem in
the general case and a very intense line of research experimentally and theoretically.
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1 Density operator description of a subsystem

Consider a bipartite system made of two parts A and B. Each part can be two individual
particles or describe a large number of constituents or degrees of freedom. Entangled
states of the (A + B) system are states which can not be written as tensor product, i.e.:

[YaB) # |ha) @ |¥5) - (2)

This means that we can not assign a state vector to any of the subparts. How can we
then describe each subpart ? The answer makes use of the density operator.

1.1 Review of density operator: statistical approach

The traditional introduction to the density operator relies on the imperfect knowledge
of the state prepared in an experiment. Assume that each realization of the experiment
produces a state [1;) with a probability m. The |¢x)’s do not need to be orthogonal,
but are normalized. The average value of an observable A over many realizations of the
experiment is

(A) =" mi (el Ala) - (3)
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Introducing the closure relation involving the basis {|u) }, 1 = 3= |u,)(u,|, yields:
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with the density operator p = >, mi|tk) (k|- The main properties of the density
operator are (check them): (i) p = p (hermitian) ; (ii) Tr[p] = 1. Furthermore, we
impose (iii) the positivity of p, i.e. that all the eigenvalues are non-negative so that they
can be interpreted as probabilities (also called population). An important quantity is
the purity, defined as Tr[p?]: a pure state |1) has a density operator p = [1) (1|, and
Tr[p?] =1 (it is a projector). Any state for which Tr[p?] < 1 is called a mized state.

In this statistical approach, the density operator is simply a convenient tool to de-
scribe the uncertainty in the knowledge of the state of the system. In an experiment
aiming at preparing a target state |i), the density operator “prepared by the experi-
ment” is:

Pexp = (1 = €)|10e) (We] + €Djunic (5)

where € < 1 if the experiment is performed correctly. Here pjumk acts in the subspace
orthogonal to [i).

Density matrix for a qubit. Consider first a pure qubit state 1)) = «|0) + 5 ]1).
The matrix associated to the density operator is

o (ol aﬁ*)
=, . 6
P ( a B ‘ ﬁ‘Q ( )
More generally, for any two-level system, being it in a pure or mixed states, the matrix
density has the form
. Poo  Po1
= . 7
P <Plo pll) 0

The diagonal coefficients pgg and p;; are called populations, while the off-diagonal ones
Po1 = pio are named coherences for reasons that will be clarified below.

The positivity of p implies that |po1|> < poop11, and the equality holds for a pure
state. The Bloch vector u = (o) = Tr[p o] associated to this two-level system is such

that L+
A u-o .
P = T with u = (2Re[p10], 21m[p10], Poo — ,011) . (8)

(see Exercice A.1.1). Hence for a mixed state, the Bloch vector lies inside the Bloch
sphere of unit radius. The purity is Tr[p?] = (1 + |[u]?)/2.

Pure versus mixed states. We will illustrate this distinction on the case of a qubit.
Consider the two density matrices:

. (la]* ap . (la]* 0
Ppure = <a*5 |ﬁ‘2> and  Pmixed = ( 0 |5‘2> . 9)

Both describe a situation where the probability to measure |0) is |a|?>. However, the
mixed states has to be interpreted in the following way: each time you repeat the



experiment the system is either in state |0) or |1), in the same way you get head or tail
when tossing a coin. Instead, the pure case corresponds to a situation where, each time,
the experiment prepares « |0) + $]1). As a an analogy to understand the difference
between mixed and pure states, consider single photons prepared either in |h) or |v)
respectively, with probabilities |a|? and |8|2. If you place a polarizer at 45° of the
vertical direction, the photons are transmitted with a probability (Ja|? + |3|%)/2 = 1/2.
If now each photon is prepared in a state «|h) 4+ [ |v), they are transmitted with a
probability |a + ]?/2 = 1/2 + Re[a*]: the last term is the interference one, related
to the coherence a*3 = pyo. This ability to yield interferences is the main distinction
between pure and mixed states.

1.2 Density operator of a subpart of a system

We come back to the problem of how to describe the subpart of a bipartite system
(A + B), characterized by the pure state |¢ap) associate to the density operator pap =
|V ap)(Yap|. The Hilbert states are £4 and g (dimensions d4 p) with basis {|u,)} and

{|vx)}. The average value of an observable A ® 15 acting on the subpart A is

da dp
(A) = Tr[papA@ip] = Y Y (un| (va papA® Lp|um) |vn) (10)
m=1 n=1
da dp .
= Z (U] [Z (Un| pap |vn) | A |tim) (11)
m=1 n=1
= Tr[pad], (12)

with pa = Trg[pap]. This operator, acting in the Hilbert space £4 associated to A,
results from the partial trace over the states associated to B. It fulfills the properties
(1)-(iii) of a density operator, and allows one to calculate the properties of the subsystem
A. Tt is called the reduced density operator. Hence the density operator introduced here
as a partial trace is not statistical, i.e. resulting from an imperfect knowledge over the
system: on the contrary, it contains all the information necessary to describe the sub-
system A, in the same way the state vector of a isolated system fully characterizes it.
We now understand why this is the quantity of choice when describing open quantum
systems, i.e. a situation where a quantum system is coupled to another external system
called a reservoir, a bath, a measuring device...: the system and the reservoir can be
entangled and thus the system must be described by a reduced density operator.

Examples of reduced density operators. Take the four Bell states |¢) involving
two qubits A and B. Calling p = |¢)(¢)|, the density operators of each of the qubits are

R N . 1 1 1.
pa =g (01p0)s +5 (1p|1)p = 3 0) (0]a + B 1) (1|4 = §]lA , (13)

with a similar expression for pp. The purities are Tr[p%] = Tr[p%] = 1/2. Hence for
the maximally entangled Bell states (in a sense that we will make quantitative below),
the density operator is maximally mixed, i.e. the matrix is proportional to the identity
operator. This gives a criteria to decide whether a bipartite state features entanglement:
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trace over the states of one of the subsystem; if the reduced density operator is maximally
mixed (proportional to 1), the state is maximally entangled.
To see that this indeed is plausible, consider now the entangled state

) = VI —[01) + ¢ |10) (14)

which intuitively should not be as entangled as the Bell’s states when € < 1. Show that
the reduced density operators are

pa=(1—¢)0) (0] +€*[1) (1] and pp =€ |0) (0] + (1 =€) [1) (1] . (15)

As one of the coefficient of the matrix is closer to 1 than the other, it means that we
have more information on the subsystems than for the Bell’s states.

2 State tomography

We now describe how to measure the density operator experimentally. The procedure
for measuring a quantum state is called state tomography.

Tomography of a pure qubit. Consider first a qubit state 1) = «|0) + 5]1).
Performing the tomography of the state means measuring |«| (from which |3| follows
as |a|? + |B|> = 1), and arg|a] — arg[3]. In terms of Bloch vector, this is equivalent to
measuring the 6 and ¢ angles. Start by measuring in the z-basis, i.e. in the {|0),|1)}
basis. Then: py = [(0])|? = |a|?, and p; = [(1|¢))|*> = |B]?. In practice, you repeat N
times the same experiment with the system prepared in |¢) (you could also measure just
once on an ensemble containing N systems if you cannot prepare individual systems).
Measure the number of times Ny ; you obtain 0 or 1. Then Ny/N — po and Ny /N — p;
when N > 1.

Now, to get argla] — arg[f], one has to measure in a different basis, for example
1£), = (|0) £1))/v2. Indeed, |,(£|¢)[* = 1 + Re[a*B], and measuring, for example,
the probability pg . allows one to measure cos(arg[a*f]).

In the case of a Stern and Gerlach experiment, measuring in the z-basis means
rotating the magnet such that the gradient of magnetic field is aligned along z. It is
however not always possible to “rotate the measuring apparatus”. Take for example a
two-level atom: we discussed in Lecture 2 that one can measure if an atom is in state
|0) or |1) by scattering light on it. If the atoms scatters, it means that the atom is, say,
in |0), while if is does not it is in state |1). Hence, this way of distinguishing the two
states allows you to measure only in the z basis. If you cannot rotate the measuring
apparatus, you may be able to rotate the state of the system: |+), = R,(5)[0) (see
notation Lecture 1 eq. 19). As ,(+|¢) = (0| Ry(—7) |[¢), one could first rotate the
system, and then measure in the z-basis. This gives of course yields the same result:
|2 (£|¥)|> = |a + B|?/2. In practice such a rotation can be performed using microwaves
or light coupling the two states, as seen in Lecture 2.

Tomography of a general density matrix for a qubit. As shown above the density
operator is p = (1 +u-0)/2, with u = (Re[pio}, Im[p10], poo — p11). Now, for a mized



state, contrarily to the pure state case, we need to measure three quantities, which are
the three components of the non-unit Bloch vector:

L1 . . .

p= 5(1 + Uy Gy + UyGy + u0) . (16)
The component u, is directly related to the populations in the {|0),|1)} basis. Hence,
repeat the experiment on N identical systems and count Ny;. Then Nyo/N — pgo and
Ni/N — p1p when N > 1, thus yielding u,. To measure u, and u,, one needs to measure
in the basis where the o, or o, are diagonal. For example, ,(+|p|+). = 1/2 + Re[po1].
As above, it may not be possible to rotate the apparatus, and one could rotate the
state instead: ,(+|p|+). = (0| Ry(=%)pRy(5)|0). One then measures the observable
f' = R,;'pR, in the z-basis. Remember (or check using Eq.(18) in Lecture 1) that
R, 0. Ry = 0., R;'0yR, = 0, and R, 0. R, = —0, thus

g 1 . . .

p= 5(1 + UG, + UyOy — U0,) (17)
The u, coefficient is now on the diagonal in the z-basis, and can be read out. The idea
of this rotation is always the same: bring the off-diagonal terms on the diagonal in the
basis you can measure, or said differently, transform coherences into populations.

Tomography of a two-qubit density matrix. Generalizing the approach above, a
two-qubit density operator p can be decomposed on o; ® o;, with i, j = z,y, 2:

p= Y. D X;j6;®6; with Nj=Tr[p6; ®065)/4=(6;06,)/4. (18)

i:07m7y72 j:07x?y7z

As for the single qubit case, usually, one can only measure terms on the diagonal in the
B = {]00),|01),|10),|11)} basis. One thus applies a rotation prior to the measurement
in this basis to bring a particular off-diagonal element onto the diagonal. For example,
to measure the coefficient )\, ,, apply a 7/2-rotation around y on the first qubit and a
7/2-rotation around x to transform the o, ® o, into a 0, ® o, operator diagonal in B.
An example of experimental results on a pair of ions is shown in Fig. 1.

Tomography of a general density matrix for N qubits. Extending the state
tomography beyond N = 8 — 10 qubits is extremely difficult, if not impossible. Indeed
the number of matrix elements one has to measure is N, ~ (2V)2/ For N = 8 (the
record so far), Ny, ~ 65500. But remember that to measure a population or coherence
with a good precision, one needs to repeat typically ~ 1000 times the same experiment,
preparing the same state as well as possible. If the experiment operates at about 100 Hz
(already a high frequency), the full tomography requires ~ 200 hours.... For N = 9,
this would be 800 hours ! Full state tomography is thus restricted to small quantum
systems.

3 Schmidt decomposition

We now derive a general entanglement criteria valid for bipartite systems in a pure state.
It will be useful to define the entanglement entropies in the next section.
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Figure 1: (a) State tomography on two Ca' ions encoding two qubit states |0) and |1)
separated by a transition at 729 nm. (b) Results for the state: (|01) + |10))/v/2. (c)
State: (|00) — [11))/+v/2. From C.F. Roos et al., Phys. Rev. Lett. 92, 220402 (2004).

Consider the general decomposition of a state |¢ap) of a bipartite system A + B:

dim€ 4 dim€p

[VaB) = Z Z Crm |Un) ® |Vm) (19)

with {|u,)} and {|v,)} two orthogonal bases of £4 and €. The Schmidt decomposition
states that you can find for any bipartite system in a pure state a decomposition:

an) = 3V [t @ [xa) (20)

with {|u,)} and {|x,)} two orthogonal basis of £4 and Ep, and r < dim€, the Schmidt
rank. The important difference between the decompositions (19) and (20) is the fact that
the sum runs over only one index n. This immediately gives a criteria for entanglement:
if r = 1, the state |14p) is separable, and if r > 1, it is entangled. At this stage this is
nothing more than a binary criteria stating if the state is entangled or not.

To demonstrate the Schmidt decomposition, take for {|u,)} a basis in which the
reduced density matrix of A is diagonal:

dimé& 4

pa = Z An |tn) (Un| (21)

Rewriting the decomposition (19), we get

dimé 4 dim&p
[WaB) = Z un) [fn) with |dn) = Z Crm [Um) - (22)
n=1 m=1

The states |¢,) are not normalized and not necessarily orthogonal with each other at
this stage. The density matrix of the A + B system is

p=10an) Capl =Y > fun) (] @ [¢n) (S - (23)
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The reduced density matrix of A is thus:
dimép

pa=Trp[p] = Z (Um| ZZW (tn | @ |Pn) (Dwr| | [0m) (24)

n

= ZZ‘U" un| (Pnldn) (25)

having used 1 = 3, |v)(v,n|. Comparing to Eq. (21), we get (¢n|dn) = Aubp,
meaning that the |¢,)’s are in fact orthogonal. Introducing the normalized states |x,) =
|n) /v A leads to the (not unique !) Schmidt decomposition.

The Schmidt decomposition has several consequences. Firstly the reduced density
operators of the subparts A and B have the same form (same eigenvalues, but act in
different Hilbert space):

pa = ZAn [un) (un| and pp = Z A [Xn) {Xal - (26)
n=1 n=1

Their purity is thus the same. Besides, Eq. (26) gives us the method to calculate the
Schmidt decomposition of a bipartite state: trace over one of the subpart to get ps or
pB, expressed in whatever convenient basis, and diagonalize the reduced density ma-
trices to get the A,’s and the eigenstates |u,) and |x,). Secondly, any local rotation,
i.e. a unitary operation acting on each subsystem independently, conserves the de-
composition: it can therefore neither entangle nor disentangle a state. To check this,
assume the Hamiltonian of A+ B is H = Hy + Hp, with [H4, Hg] = 0. The associated
evolution operator is U(t) = Ua(t) @ Ug(t), with Us p(t) = exp[—iH 4 pt/h]. Hence,
starting from a Schmidt form [ap) = Y. VA |un) @ |xn), one gets U(t) |ap) =
S VAlUA(t) [un)] @ [Us(t) |xa)]. The decomposition is thus preserved. So, once
again, to change the entanglement (create or destroy), the Hamiltonian must contain a
term H,p acting on the two parts of the systems at the same time. Examples of such
hamiltonians are:

1. the spin orbit coupling: Hap = AL - S, or the Ising Hamiltonian H,p = Jé'jg%;
2. The Jaynes-Cummings Hamiltonian: Hap = g(6.a+d_a™).

Lastly, any mixed state described by the density operator pa = > _; A, |uy) (u,| can be
“purified” by considering it as the partial trace of a pure state [ag) =Y . _; Vs |[ty) ®
|Xn) of larger system.

Schmidt decomposition and many-body physics. As soon as quantum particles
interact, entanglement between them is created and the question naturally arises as how
much entanglement. It turns out that there exist general statements about the amount
of entanglement in ensembles of quantum particles. To illustrate this, let us consider
the Transverse Field Ising model (TFI): it describes an ensemble of spin 1/2 particles
with an interaction of the form 6767 between pairs (i, j), placed in a magnetic field B
perpendicular to the z-axis. For a chain of NV spins with nearest neighbor interactions,
the Hamiltonian is:

:—JZ&;&;H B&® (J>0,B>0). (27)
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Figure 2: (a) A chain of N spins prepared in a state |1) is split in two equal parts
and one calculates the Schmidt numbers \,. For the ground state |iy), only a
few have significant values, while for any random excited states they all contribute.
(b) Generic figure showing that the ground state of a local Hamiltonian features
non-negligible Schmidt numbers up to a bound dimension Y. Figures adapted from
[https://scipost.org/SciPostPhysLect Notes.5]

This model is used as an idealization of quantum magnets in condensed matter. It is
easy to calculate the ground state in limiting cases: if B > J, the ¢* term dominates
and the ground state is (|1) + [{))®; if J > B, the interaction term is minimized
by the ferromagnetic states |1,1,71 ...) and |}, {,] ...). In the general case B ~ J, the
non-commutation between the two parts of the Hamiltonian, i.e. [6267,,,6%] # O,
makes it impossible to diagonalize them independently and one needs to resort to a full
diagonalization, which becomes challenging beyond a few tens of spins.

It was realized in the early 2000’s that the ground-states of many-body systems with
local interactions are actually quite special in that they do not feature a lot of entangle-
ment. This can be quantified mode precisely using the Schmidt decomposition: split the
chain into two parts A and B containing N/2 spins each and apply the decomposition
to the ground-state:

[es) = D VA tn) 4 [xn) - (28)
n=1
A priori, the rank is such that » < N/2. However it is much better than that: only
a few of the Schmidt numbers A, are non negligible. This is illustrated in Fig.2(a)
where we show the \,’s for the ground state of the TFI model for a chain of 16 atoms
and B = 1.5J. By contrast, had we taken randomly any excited states, we would have
found that all the \,’s have nearly the same value. It turns out that this is a general
property of the ground states of local Hamiltonians (the demonstration is very hard and
way beyond what we discuss in this course), as shown in Fig.2(b). The upper bound
in the sum is called the bound dimension x: it represents the largest Schmidt number
that contribute significantly to the sum at a given level of approximation € defined such
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Figure 3: Von Neumann entropy for a system of two qubits.

that:

1) = DV An ) 4 ) g < € - (29)

This is a considerable simplification for numerical simulations: instead of having to
diagonalize matrices of size 2V x 2V to find the ground state, it is enough to handle
matrices of dimension x X x (see also at the end of next section). This remark is at
the heart of modern numerical methods used to calculate the properties of many-body
systems, such as tensor networks and Matrix-Product states.

4 Entanglement entropies and their measurement

We have seen in Section 1.2 two examples of entangled states that do not have the same
reduced density matrix: the Bell state (13) features p4 = 1/2, while the state (14) has
pa = (1—¢€%)0) (0] +€2|1) (1]. The Bell state is the one for which we have the smallest
amount of information on each subpart: the two states |0) and |1) have exactly the same
probability, contrarily to the second one. This information content can be quantified by
introducing entanglement entropies.

Remember first that in statistical physics, one introduces the Shannon entropy as:

SShannon = - Zpl 1npl 5 (30)
l

where the p;’s are the probability to find a system in the micro-state [. One fundamental
assumption of statistical physics is the fact that for an isolated system, all the micro-
states realizing a given macrostate have the same probability p; = 1/€2, with €2 the total
number of microstates that lead to this macrostate. This is equivalent to saying that
the entropy of the isolated system is maximal under the constraint ), p; = 1. The fact
that all microstates have the same probability indicates that we have the least amount
of information possible about the microstate the system is in.



Von Neumann entropy. The extension of this idea in quantum physics leads to the
Von Neumann entropy for a system described by a density operator p:

Sux(p) = —T[pln ] (31)

For a bipartite system in a pure state, the reduced density operators of A and B have
the same form thanks to the Schmidt decomposition (see Eq. 26). Thus

Sun(pa) = Syn(pp) = —Tr[palnpa] = =Y Auln, (32)
n=1

which is nothing but the Shannon entropy with p; = A;, the eigenvalues of the reduced
density matrices. We then find that for a subsystem in a pure state, i.e. |[1)45) separable,
r=1,and A = 1, Syn(pa) = 0: the von Neumann entropy of a pure state is 0, which
indicates again that we have perfect knowledge of the state the system is in.

Let us consider the case of two entangled qubits. The Schmidt decomposition applies
with two eigenvalues A\ and Ay = 1 — A\; (remember that Tr[p4] = A\ + Ay = 1). The
evolution of Syn (A1) is shown in Fig. 3. We do observe that the entropy is maximum for
A1 =1/2, and is 0 for A\; = 0, 1. Hence we now have a quantitative criteria to measure
the degree of entanglement for a bipartite system: the larger the entanglement entropy,
the more entangled the state is (for this particular bipartition).

Rényi entropies. Experimentally however, the von Neumann entropy is not a conve-
nient quantity: we have seen above that the experimental reconstruction of the density
matrix Pexp of a system of more than ~ 8 — 10 particles (or subparts) is too challenging.
We can therefore not calculate Syn from pey,, and besides no one has so far been
able to devise an experiment to measure directly Syy without the precise knowledge of
Pexp- It turns out however that one can define other entropies that are experimentally
measurable. Those are the Rényi entropies defined as:

1
Si(p) = - In(Tr[p) with a>1. (33)

One can prove that Séa) (p) = Syn(p) for a« — 1 (see exercise A.2). The most interesting
one experimentally is the second-order Rényi entropy Slg ) (p), which is directly related
to the purity of p, Tr[p?].

By now, several experiments have measured Rényi entropies using either atoms or
superconducting qubits. They used mainly two types of methods which we illustrate
below. A first experiment by R. Islam et al. [Nature 528, 77 (2015)] explored the entan-
glement between 4 atoms placed in an optical lattices. When the lattice is very deep the
atoms are well isolated in each site, and independent from each other, hence should not
be entangled. On the contrary, when the lattice amplitude is weak, the atoms tunnel
between sites and become entangled: this is not obvious and we take this as a fact. The
idea to demonstrate the presence of entanglement is the following: divide the system
in two parts A and B and measure the purity Tr[p%]. If entanglement is present in the
system, we should have Tr[p%] < Tr[p%z], or equivalently Sl({z)(ﬁA) > Sg)(ﬁAB). The
measurement of the purity is done in the following way: prepare two copies 1 and 2 of the
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Figure 4: Measurement of the purity of 4 atoms in an optical lattice. (a) One prepares
two copies of the system and perform a swap operation akin to a two-photon interference,
followed by the measurement of the parity of the number of atoms on each side. (b)
Results of the experiment for different partitions of the 4 atoms. From [Nature 528, 77
(2015))].

system, described by density operators p; . Weakening the potential barrier between the
two copies allows the tunneling between sites (see Fig. 4a). A two-atom interference akin
to the Hong-Ou-Mandel effect between photons occurs, that swaps the atoms between
copy 1 and 2. It then turns out (and this is far from being obvious) that the average
parity in the number of atoms in each well after this is directly Tr[p;ps] = Tr[p?] when
the two copies are identical. Figure 4(b) shows the result of the experiment: the Rényi
entropy of a sub-part increases when the atoms are more delocalized along the 4 sites,
as expected.

The second method demonstrated for the first time by T. Brydges et al. [Science
364, 260 (2019)] does not require two copies of the same system. The idea is to apply
on the system of N qubits a set of random unitary operations (i.e. rotations on the
Bloch sphere) u; ® us ® ... ® uy. For a given set of unitaries, you repeat the experiment
many times to get the statistics of the outcomes of the experiment, and then repeat for
a new set of unitaries. It turns out (and this is very hard to show) that the correlations
between results is related to the purity of the density matrix. To see that it is plausible,
consider a single qubit, apply random rotation followed by a measurement in the z-basis
to obtain (o,). For a pure state the Bloch vector following any random rotation is always
on the Bloch sphere and the distribution of results is uniform between [—1,1] (Fig. 5a).
If the state is mixed, the vector has a length smaller than 1, resulting in a narrower
distribution of the results. Thus, measuring the width of the distribution tells about the
purity Tr[p?]. The experiment was performed using a chain of up to 20 entangled ions,
each encoding a qubit. The authors measured the purity of a sub-system of N4 ions.
An example of results for N = 10 ions is shown in Fig. 5(b): the maximum entropy
(hence lowest purity) is obtained for Ny = N/2.

Entropy and Area Laws. We have seen in Sec.3 that the Schmidt rank of the
ground state of a many-body system of N spins-1/2 is usually bounded by y < 2V/2,
On the contrary, for most excited states taken randomly, x ~ 2V/2. Hence, in the ground
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Figure 5: Measurement of the purity by application of random unitaries. (a) Example
on a single pure or mixed qubit. (b) Results for 10 ions. From [Science 364, 260 (2019)].

state, the entanglement entropy is such that:

X
1
SAQ—Z)\nln)\ngzlnxxlenx, (34)

n=1

assuming A, ~ 1/x. Hence the entanglement entropy is related to the bound dimension
by Sa ~ Inx. In thermodynamics, we are used to the entropy being extensive, i.e.
proportional to the volume of the system or the number of particles N. Things are
more subtle with entanglement entropies that can be non extensive. In general, for any
random states but the ground state, S, fulfills volume laws: S4 ~ N/21In2 for N qubits
(bipartition). However, in the ground state it obeys area laws: S, is proportional to
the “area” between the two sub-parts A and B of the system. For example, in a chain
the “area” of the separation between the two subpart is 1. In a 2-dimensional square
array, it would be the perimeter of the boundary between the two subparts, hence L (see
Fig.6). This is the recognition that most of the entanglement is located at the boundary
between the two sub-systems. Numerically, again, this is very useful: it means that in
2D, S4 = aL ~ a/N, hence the bound dimension is x ~ e®VN This is the size of the
matrix one has to diagonalize. In 1D it is even better: S4, and thus y are constant.

5 Multipartite entanglement and mixed entangled
states

So far we have described mainly bipartite entanglement. This concept naturally applies
to systems with two degrees of freedom (e.g. spin and orbital angular momentum, two
modes of a field, two spins...). Entanglement can be generalized to multipartite cases
following the same procedure as for the bipartite case. Take a multipartite system
consisting of N subparts 1,2,3,...N and described by a pure state |¢)y). The state is
separable if [n) = [p1) @ |p2) @ |¢d3) @ ... ® |¢pn). If not separable, it is entangled. A
biseparable state can be decomposed in two separable parts containing n and N — n
subpart: |y) = |pn) ® |¢n —n), but each of the subpart can be entangled. A fully
entangled state is a state which is not biseparable with respect to any bipartition of the
system.
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Figure 6: Illustration of the area laws for the entanglement entropy, in 1 and 2 dimen-
sions.

As a matter of fact, most systems that we deal with experimentally are not pure
states, but rather mixed states. This raises the question of how to define entanglement in
this case. A bipartite system is separable when, for a realization k that has a probability

oap =P @ p%. Summi 1l th ible realizati
Dks PAB = P, @ pp’. dDumming over all the possible realizations, one gets

Separable :  psp = Zpk [)(f) ® /359'“) (35)
k

Entangled : pap # Zpk ﬁff) ® /35_5) (36)
k

All these rather abstract definitions (of little practical use) suggest us that defining
entanglement is an extremely challenging problem, and as a matter of fact we are still
at the beginning of attempting to classify entanglement in multipartite systems.

Examples of multipartite states and classes of entanglement. Here, we revisit
briefly some ideas already introduced in Lecture 3, now making use of the density
operator. Consider the two states containing N qubits, already seen in Lecture 3:

1
|GHZy) = —2(]0, 0,0,...) +11,1,1...)) (Greenberger-Horne-Zeilinger state) , (37)

1
(W) \/N(|1,0,0, ) +10,1,0,...) + ... 4+10,0,...,1) (Werner state) . (38)
Both are entangled but belong to different entanglement class. The GHZ state has
however a major drawback: it is very sensitive to atom losses. Suppose that you lose
one of the N atoms of the state. As you don’t know in which state is the lost particle,
we have to trace over its two possible states to calculate the reduced density operator
of the N — 1 remaining particles. We obtain

R 1 _ _ 1 _ _
P = Tag, [pS17) = 10N OV SN YL (39)

The operator is diagonal: we have lost the quantum coherences, and the N — 1 atoms
are now in a statistical mixture. The W state is not very useful for metrology, but is
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robust with respect to the loss of particles. Indeed (show it...):

. . N -1 1
The state remains nearly pure for large N.

Experimentally, GHZ states of up to 24 trapped ions have been prepared and char-
acterized [Phys. Rev. X Quantum 2, 020343 (2021)]. Werner states of up to 200 atoms
have been reported [Phys. Rev. X 5, 031015 (2015)], but the characterization was not

direct and relied on assumptions on the system.

6 Entanglement witnesses

As probably obvious from the sections above, if preparing entangled states in the lab is
already a challenge, characterizing them is the experimentalist’s nightmare. The main
problem is to devise experimentally measurable criteria.

Bell test. For two qubits, we have seen that a violation of the Bell’s inequalities
characterizes entanglement. Hence, if one prepares a two-qubit state, subjects it to a Bell
test (i.e. measure the S parameter introduced by John Bell) and obtain a violation, then
the state is entangled. However, it is a very strong test: a state can be entangled without
violating Bell’s inequalities. This would for example be the case if the system prepared
in an experiment is described by the density matrix: pex, = (1 — €)|9){(¥B| + €Djunk,
with |¢g) of the Bell states. This states leads to a violation of Bell’s inequality if
e<1-1/v/2~0.3.

Fidelity. When the number of qubits grows, measuring the correlations or the density
matrix is too hard, and one has to resort to more global (but less precise...) criteria.
The fidelity is one of them. Assume that you want to prepare a target state |¢;), and
that you actually produce on the experiment a state |t)exp). The fidelity F is defined
as the square of the overlap between what you prepare and what you actually want to
prepare: F = |(exp|tr) 2. If what you get in the experiment is a density matrix Peyp,
then F = (Y| fexp [11). It turns out that the fidelity is the easiest quantity to measure
experimentally (see homework later). A criterion you will derive in the homework states
that F > 1/2 = entanglement. For a two-qubit state to violate Bell’s inequality,
you need F > 1/v/2 =~ 0.7. However be careful that F < 1/2 does not imply the
absence of entanglement ! Assume for example you want to prepare the state |¢,) =
(]01) + [10))/v/2, and that your experiment generates instead |¢,) = (]00) + |[11))/v/2:
F =0 and yet the state prepared is entangled !

Entanglement witness. A witness operator W is defined such that (W) = Tr[fpep W] <

~

0 if pexp is entangled and (W) > 0 if peyp is separable (the choice of the sign is a con-

~

vention). To be useful (W) has to be measurable in a lab. As a first example, take

~

W =1-=2]s,) (4,]. Then (W) =1 — 2F is related to the measurement of the fidelity.
As another example, consider a chain of spin-1/2 particles for which the hamiltonian
H=-JY, S, - Spi1 (J > 0). If you suppose that the N pair of atoms in the system
are all in a separable state, then (S, - S,41) = (Sp) - (Spst), and [(H)| < NJ/4. If on
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the contrary the pairs are, say, in the entangled state (|01) — 110))/v/2, then one finds
(H)y = 3NJ/4 (use S, - S,y = (S —S2 —S2,,)/2). Thus, if you take as a witness
<W> = 1—2H/J, you are able to tell is there is entanglement in the system. The

advantage of the witness method lies in the fact that it only requires measuring global
observables, like here (H).

A Problem set for Lecture 4

A.1 Some derivations...
A.1.1 Density matrix of a qubit in a mixed state.

Take for the density matrix the form of Eq. (7).

1. Give the components of the Bloch vector u(f, ¢) as a function of the coefficients
of p.

2. Show that |po1|*> < poopir- In which case is it an equality ?

3. Show that |u| < 1.

A.1.2 Partial traces and reduced density operators

1. Calculate the reduced density operators py associated to the qubit states |py) =
(|00) +101) +]10) £ |11))/2. Which of the two states is entangled?

2. Calculate the reduced density operators associated to the state (|00) + |01) +

[11))/V/3.
3. Demonstrate that \;; = (6; ® 6;) = Tr[p6; ® 6,]/4 in equation (18).

4. Demonstrate equations (39) and (40).

A.2 Entropies
1. Show that Synx(pa) = — > _; AnIn A, (notations of the lecture).

2. Consider the Rényi entropy. Show that Sga)(,é) = —In[>", pp], with p; the
eigenvalues of p, such that ), p, = 1.

3. We want to show that S ( 0) — Syn(p) for @« — 1. To do so write, that >, pt =
> e prexp[(o — 1) Inpy] and Taylor expand the exponential for « — 1 to recover
the expression of the Shannon entropy.

4. Use the von Neumann entropy to decide which of the two states is the most
entangled: [i1) = 1/2/7]00) + /5/7|11) or |¢b9) = /2/3|01) + /1/3|10) ?

5. Same question as before using the second-order Rényi entropy.
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