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In Lecture 3, we have studied the basic properties of entangled, i.e. non separable,
states. We have in particular seen that entanglement implies abandoning local realism
in the sense that the subparts of the system do not have defined properties before a
measurement. Moreover, entangled states feature non-local correlations between their
subparts. These correlations are stronger than any classical correlations, as demon-
strated by the violation of the Bell’s inequalities. We have also seen that these quantum
correlations could be used as a resource (teleportation, quantum computation, quantum
metrology...).

In this lecture, we will address the difficult question of how to quantify entanglement.
To see why this question arises, consider the entangled two-qubit states:

1√
2

(|01〉+ |10〉) and
√

1− ε2 |01〉+ ε |10〉 . (1)

Intuitively, the second one seems closer to a separable state than the first state when
ε � 1, but can we make this intuition quantitative ? Also, at a fundamental level, a
system is generally not in a pure state (see below) but rather described by a density
operator: how can we define entanglement in this case ? Although some criteria exist,
as we will see, the quantification of entanglement remains an outstanding problem in
the general case and a very intense line of research experimentally and theoretically.

1 Density operator description of a subsystem

Consider a bipartite system made of two parts A and B. Each part can be two individual
particles or describe a large number of constituents or degrees of freedom. Entangled
states of the (A+B) system are states which can not be written as tensor product, i.e.:

|ψAB〉 6= |ψA〉 ⊗ |ψB〉 . (2)

This means that we can not assign a state vector to any of the subparts. How can we
then describe each subpart ? The answer makes use of the density operator.

1.1 Review of density operator: statistical approach

The traditional introduction to the density operator relies on the imperfect knowledge
of the state prepared in an experiment. Assume that each realization of the experiment
produces a state |ψk〉 with a probability πk. The |ψk〉’s do not need to be orthogonal,
but are normalized. The average value of an observable Â over many realizations of the
experiment is

〈Â〉 =
∑

k

πk〈ψk|Â|ψk〉 . (3)
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Introducing the closure relation involving the basis {|u〉n}, 1̂ =
∑

n |un〉〈un|, yields:

〈Â〉 =
∑

n

〈un|
(∑

k

πk|ψk〉〈ψk|
)
Â|un〉 = Tr[ρ̂Â] , (4)

with the density operator ρ̂ =
∑

k πk|ψk〉〈ψk|. The main properties of the density
operator are (check them): (i) ρ̂† = ρ̂ (hermitian) ; (ii) Tr[ρ̂] = 1. Furthermore, we
impose (iii) the positivity of ρ̂, i.e. that all the eigenvalues are non-negative so that they
can be interpreted as probabilities (also called population). An important quantity is
the purity, defined as Tr[ρ̂2]: a pure state |ψ〉 has a density operator ρ̂ = |ψ〉〈ψ|, and
Tr[ρ̂2] = 1 (it is a projector). Any state for which Tr[ρ̂2] < 1 is called a mixed state.

In this statistical approach, the density operator is simply a convenient tool to de-
scribe the uncertainty in the knowledge of the state of the system. In an experiment
aiming at preparing a target state |ψt〉, the density operator “prepared by the experi-
ment” is:

ρ̂exp = (1− ε)|ψt〉〈ψt|+ ερ̂junk , (5)

where ε � 1 if the experiment is performed correctly. Here ρ̂junk acts in the subspace
orthogonal to |ψt〉.
Density matrix for a qubit. Consider first a pure qubit state |ψ〉 = α |0〉 + β |1〉.
The matrix associated to the density operator is

ρ̂ =

(
|α|2 αβ∗

α∗β |β|2
)
. (6)

More generally, for any two-level system, being it in a pure or mixed states, the matrix
density has the form

ρ̂ =

(
ρ00 ρ01
ρ10 ρ11

)
. (7)

The diagonal coefficients ρ00 and ρ11 are called populations, while the off-diagonal ones
ρ01 = ρ∗10 are named coherences for reasons that will be clarified below.

The positivity of ρ̂ implies that |ρ01|2 ≤ ρ00ρ11, and the equality holds for a pure
state. The Bloch vector u = 〈σ〉 = Tr[ρ̂σ] associated to this two-level system is such
that

ρ̂ =
1 + u · σ

2
with u = (2Re[ρ10], 2Im[ρ10], ρ00 − ρ11) . (8)

(see Exercice A.1.1). Hence for a mixed state, the Bloch vector lies inside the Bloch
sphere of unit radius. The purity is Tr[ρ̂2] = (1 + |u|2)/2.

Pure versus mixed states. We will illustrate this distinction on the case of a qubit.
Consider the two density matrices:

ρ̂pure =

(
|α|2 αβ∗

α∗β |β|2
)

and ρ̂mixed =

(
|α|2 0

0 |β|2
)
. (9)

Both describe a situation where the probability to measure |0〉 is |α|2. However, the
mixed states has to be interpreted in the following way: each time you repeat the
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experiment the system is either in state |0〉 or |1〉, in the same way you get head or tail
when tossing a coin. Instead, the pure case corresponds to a situation where, each time,
the experiment prepares α |0〉 + β |1〉. As a an analogy to understand the difference
between mixed and pure states, consider single photons prepared either in |h〉 or |v〉
respectively, with probabilities |α|2 and |β|2. If you place a polarizer at 45◦ of the
vertical direction, the photons are transmitted with a probability (|α|2 + |β|2)/2 = 1/2.
If now each photon is prepared in a state α |h〉 + β |v〉, they are transmitted with a
probability |α + β|2/2 = 1/2 + Re[α∗β]: the last term is the interference one, related
to the coherence α∗β = ρ10. This ability to yield interferences is the main distinction
between pure and mixed states.

1.2 Density operator of a subpart of a system

We come back to the problem of how to describe the subpart of a bipartite system
(A+B), characterized by the pure state |ψAB〉 associate to the density operator ρ̂AB =
|ψAB〉〈ψAB|. The Hilbert states are EA and EB (dimensions dA,B) with basis {|un〉} and

{|vn〉}. The average value of an observable Â⊗ 1̂B acting on the subpart A is

〈Â〉 = Tr[ρ̂ABÂ⊗ 1̂B] =

dA∑

m=1

dB∑

n=1

〈um| 〈vn| ρ̂ABÂ⊗ 1̂B |um〉 |vn〉 (10)

=

dA∑

m=1

〈um|
[
dB∑

n=1

〈vn| ρ̂AB |vn〉
]
Â |um〉 (11)

= Tr[ρ̂AÂ] , (12)

with ρ̂A = TrB[ρ̂AB]. This operator, acting in the Hilbert space EA associated to A,
results from the partial trace over the states associated to B. It fulfills the properties
(i)-(iii) of a density operator, and allows one to calculate the properties of the subsystem
A. It is called the reduced density operator. Hence the density operator introduced here
as a partial trace is not statistical, i.e. resulting from an imperfect knowledge over the
system: on the contrary, it contains all the information necessary to describe the sub-
system A, in the same way the state vector of a isolated system fully characterizes it.
We now understand why this is the quantity of choice when describing open quantum
systems, i.e. a situation where a quantum system is coupled to another external system
called a reservoir, a bath, a measuring device...: the system and the reservoir can be
entangled and thus the system must be described by a reduced density operator.

Examples of reduced density operators. Take the four Bell states |ψ〉 involving
two qubits A and B. Calling ρ̂ = |ψ〉〈ψ|, the density operators of each of the qubits are

ρ̂A =B 〈0|ρ̂|0〉B +B 〈1|ρ̂|1〉B =
1

2
|0〉 〈0|A +

1

2
|1〉 〈1|A =

1

2
1̂A , (13)

with a similar expression for ρ̂B. The purities are Tr[ρ̂2A] = Tr[ρ̂2B] = 1/2. Hence for
the maximally entangled Bell states (in a sense that we will make quantitative below),
the density operator is maximally mixed, i.e. the matrix is proportional to the identity
operator. This gives a criteria to decide whether a bipartite state features entanglement:
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trace over the states of one of the subsystem; if the reduced density operator is maximally
mixed (proportional to 1̂), the state is maximally entangled.

To see that this indeed is plausible, consider now the entangled state

|ψ〉 =
√

1− ε2 |01〉+ ε |10〉 , (14)

which intuitively should not be as entangled as the Bell’s states when ε� 1. Show that
the reduced density operators are

ρ̂A = (1− ε2) |0〉 〈0|+ ε2 |1〉 〈1| and ρ̂B = ε2 |0〉 〈0|+ (1− ε2) |1〉 〈1| . (15)

As one of the coefficient of the matrix is closer to 1 than the other, it means that we
have more information on the subsystems than for the Bell’s states.

2 State tomography

We now describe how to measure the density operator experimentally. The procedure
for measuring a quantum state is called state tomography.

Tomography of a pure qubit. Consider first a qubit state |ψ〉 = α |0〉 + β |1〉.
Performing the tomography of the state means measuring |α| (from which |β| follows
as |α|2 + |β|2 = 1), and arg[α] − arg[β]. In terms of Bloch vector, this is equivalent to
measuring the θ and ϕ angles. Start by measuring in the z-basis, i.e. in the {|0〉 , |1〉}
basis. Then: p0 = |〈0|ψ〉|2 = |α|2, and p1 = |〈1|ψ〉|2 = |β|2. In practice, you repeat N
times the same experiment with the system prepared in |ψ〉 (you could also measure just
once on an ensemble containing N systems if you cannot prepare individual systems).
Measure the number of times N0,1 you obtain 0 or 1. Then N0/N → p0 and N1/N → p1
when N � 1.

Now, to get arg[α] − arg[β], one has to measure in a different basis, for example
|±〉x = (|0〉 ± |1〉)/

√
2. Indeed, |x〈±|ψ〉|2 = 1

2
± Re[α∗β], and measuring, for example,

the probability p0,x allows one to measure cos(arg[α∗β]).
In the case of a Stern and Gerlach experiment, measuring in the x-basis means

rotating the magnet such that the gradient of magnetic field is aligned along x. It is
however not always possible to “rotate the measuring apparatus”. Take for example a
two-level atom: we discussed in Lecture 2 that one can measure if an atom is in state
|0〉 or |1〉 by scattering light on it. If the atoms scatters, it means that the atom is, say,
in |0〉, while if is does not it is in state |1〉. Hence, this way of distinguishing the two
states allows you to measure only in the z basis. If you cannot rotate the measuring
apparatus, you may be able to rotate the state of the system: |+〉x = Ry(

π
2
) |0〉 (see

notation Lecture 1 eq. 19). As x〈+|ψ〉 = 〈0|Ry(−π
2
) |ψ〉, one could first rotate the

system, and then measure in the z-basis. This gives of course yields the same result:
|x〈±|ψ〉|2 = |α + β|2/2. In practice such a rotation can be performed using microwaves
or light coupling the two states, as seen in Lecture 2.

Tomography of a general density matrix for a qubit. As shown above the density
operator is ρ̂ = (1 + u · σ)/2, with u = (Re[ρ10], Im[ρ10], ρ00 − ρ11). Now, for a mixed
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state, contrarily to the pure state case, we need to measure three quantities, which are
the three components of the non-unit Bloch vector:

ρ̂ =
1

2
(1 + uxσ̂x + uyσ̂y + uzσ̂z) . (16)

The component uz is directly related to the populations in the {|0〉 , |1〉} basis. Hence,
repeat the experiment on N identical systems and count N0,1. Then N0/N → ρ00 and
N1/N → ρ11 when N � 1, thus yielding uz. To measure ux and uy, one needs to measure
in the basis where the σx or σy are diagonal. For example, x〈+|ρ̂|+〉x = 1/2 + Re[ρ01].
As above, it may not be possible to rotate the apparatus, and one could rotate the
state instead: x〈+|ρ̂|+〉x = 〈0|Ry(−π

2
)ρ̂Ry(

π
2
) |0〉. One then measures the observable

ρ̂′ = R−1y ρ̂Ry in the z-basis. Remember (or check using Eq.(18) in Lecture 1) that
R−1y σxRy = σz, R−1y σyRy = σy and R−1y σzRy = −σx, thus

ρ̂′ =
1

2
(1 + uxσ̂z + uyσ̂y − uzσ̂x) . (17)

The ux coefficient is now on the diagonal in the z-basis, and can be read out. The idea
of this rotation is always the same: bring the off-diagonal terms on the diagonal in the
basis you can measure, or said differently, transform coherences into populations.

Tomography of a two-qubit density matrix. Generalizing the approach above, a
two-qubit density operator ρ̂ can be decomposed on σi ⊗ σj, with i, j = x, y, z:

ρ̂ =
∑

i=0,x,y,z

∑

j=0,x,y,z

λij σ̂i ⊗ σ̂j with λij = Tr[ρ̂ σ̂i ⊗ σ̂j]/4 = 〈σ̂i ⊗ σ̂j〉/4 . (18)

As for the single qubit case, usually, one can only measure terms on the diagonal in the
B = {|00〉 , |01〉 , |10〉 , |11〉} basis. One thus applies a rotation prior to the measurement
in this basis to bring a particular off-diagonal element onto the diagonal. For example,
to measure the coefficient λx,y, apply a π/2-rotation around y on the first qubit and a
π/2-rotation around x to transform the σx ⊗ σy into a σz ⊗ σz operator diagonal in B.
An example of experimental results on a pair of ions is shown in Fig. 1.

Tomography of a general density matrix for N qubits. Extending the state
tomography beyond N = 8− 10 qubits is extremely difficult, if not impossible. Indeed
the number of matrix elements one has to measure is Nm ∼ (2N)2/ For N = 8 (the
record so far), Nm ≈ 65500. But remember that to measure a population or coherence
with a good precision, one needs to repeat typically ∼ 1000 times the same experiment,
preparing the same state as well as possible. If the experiment operates at about 100 Hz
(already a high frequency), the full tomography requires ∼ 200 hours.... For N = 9,
this would be 800 hours ! Full state tomography is thus restricted to small quantum
systems.

3 Schmidt decomposition

We now derive a general entanglement criteria valid for bipartite systems in a pure state.
It will be useful to define the entanglement entropies in the next section.
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with an intensified CCD camera separately for each ion.
Observation of fluorescence indicates that the ion was
projected into the S1=2 ! j1i state; no fluorescence reveals
the D5=2 ! j0i state. By repeating the experimental cycle
200 times, the average populations of all product basis
states j00i, j01i, j10i, and j11i are determined.

A Bell state is created by applying laser pulses to ion 1
and 2 on the blue sideband and the carrier. Using the Pauli
spin matrices !x,!y,!z [13] and the operators b and by

that annihilate and create a phonon in the breathing
mode, we denote single qubit carrier rotations of qubit
" by

R""#;$# $ exp
!

i
#
2
"!""#

x cos$% !""#
y sin$#

"

(1)

and rotations on the blue sideband of the vibrational
breathing mode by

R&
" "#;$# $ exp

!

i
#
2
"!""#

x by cos$% !""#
y b sin$#

"

: (2)

The Bell state !' $ "j10i' j01i#=
###

2
p

is produced by
the pulse sequence U!' $ R&

2 "%;'%=2#R2"%;%=2# (
R&
1 "%=2;%%=2# applied to the j11i state. The pulse

R&
1 "%=2;%%=2# entangles the motional and the internal

degrees of freedom; the next two pulses R&
2 "%;'%=2# (

R2"%;%=2# map the motional degree of freedom onto
the internal state of ion 2. Appending another % pulse,
U"' $ R2"%; 0#U!', produces the state "' up to a
global phase. The pulse sequence takes less than 200 &s.

To account for experimental imperfections, the quan-
tum state is described by a density matrix '. For its
experimental determination we expand ' into a super-
position ' $ P

i(iOi of mutually orthogonal Hermitian
operators Oi, which form a basis and obey the equation
tr"OiOj# $ 4)ij [14]. Then the coefficients (i are related
to the expectation values of Oi by (i $ tr"'Oi#=4. For a
two-qubit system, a convenient set of operators is given by
the 16 operators !"1#

i ) !"2#
j , "i; j $ 0; 1; 2; 3#, where !""#

i
runs through the set of Pauli matrices 1;!x;!y;!z, of
qubit ".

The reconstruction of the density matrix ' is accom-
plished by measuring the expectation values h!"1#

i )
!"2#

j i'. A fluorescence measurement projects the quantum
state into one of the states jx1x2i, xi 2 f0; 1g. By repeat-
edly preparing and measuring the quantum state, the
average population in states jx1x2i is obtained from which
we calculate the expectation values of !"1#

z , !"2#
z , and

!"1#
z ) !"2#

z . To measure operators involving !y, we apply
a transformation U that maps the eigenvectors of !y onto
the eigenvectors of !z, i.e., U!yU%1 $ !z, where U $
R"%=2;%#. Similarly, the operator !x is transformed into
!z by choosing U $ R"%=2; 3%=2#. Therefore, all expec-
tation values can be determined by measuring !"1#

z , !"2#
z ,

or !"1#
z ) !"2#

z . To obtain all 16 expectation values, nine
different settings have to be used. For each setting, the
experiment is repeated 200 times at a repetition rate of

50 Hz. The whole reconstruction process is therefore
completed in less than 40 s. Since a finite number of
experiments allows only for an estimation of the expec-
tation values h!"1#

i ) !"2#
j i', the reconstructed matrix 'R

is not guaranteed to be positive semidefinite [15].
We avoid this problem by employing a maximum like-
lihood estimation of the density matrix [15,16], fol-
lowing the procedure as suggested and implemented in
Refs. [16–18].

For the pulse sequence that is designed to produce the
state !& $ "j10i& j01i#=

###

2
p

, we obtain the density ma-
trix '!& shown in Fig. 1(a). The fidelity F of the recon-
structed state is F $ h!&j'!& j!&i $ 0:91. To produce
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FIG. 1. (a) Real and imaginary parts of the density matrix
'!& that approximates !& $ "j10i& j01i#=

###

2
p

. The measured
fidelity is F!& $ h!&j'!& j!&i $ 0:91. (b) Real and imagi-
nary parts of the density matrix '!% that approximates !% $
"j10i% j01i#=

###

2
p

. The measured fidelity is F!% $ 0:90.
(c),(d) Density matrix elements of (c) '"& and (d) '"% .
Here, F"& $ 0:91 and F"% $ 0:88.
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Figure 1: (a) State tomography on two Ca+ ions encoding two qubit states |0〉 and |1〉
separated by a transition at 729 nm. (b) Results for the state: (|01〉 + |10〉)/

√
2. (c)

State: (|00〉 − |11〉)/
√

2. From C.F. Roos et al., Phys. Rev. Lett. 92, 220402 (2004).

Consider the general decomposition of a state |ψAB〉 of a bipartite system A+B:

|ψAB〉 =

dimEA∑

n=1

dimEB∑

m=1

cnm |un〉 ⊗ |vm〉 , (19)

with {|un〉} and {|vn〉} two orthogonal bases of EA and EB. The Schmidt decomposition
states that you can find for any bipartite system in a pure state a decomposition:

|ψAB〉 =
r∑

n=1

√
λn |un〉 ⊗ |χn〉 , (20)

with {|un〉} and {|χn〉} two orthogonal basis of EA and EB, and r ≤ dimEA the Schmidt
rank. The important difference between the decompositions (19) and (20) is the fact that
the sum runs over only one index n. This immediately gives a criteria for entanglement:
if r = 1, the state |ψAB〉 is separable, and if r > 1, it is entangled. At this stage this is
nothing more than a binary criteria stating if the state is entangled or not.

To demonstrate the Schmidt decomposition, take for {|un〉} a basis in which the
reduced density matrix of A is diagonal:

ρ̂A =

dimEA∑

n=1

λn |un〉 〈un| . (21)

Rewriting the decomposition (19), we get

|ψAB〉 =

dimEA∑

n=1

|un〉 |φn〉 with |φn〉 =

dimEB∑

m=1

cnm |vm〉 . (22)

The states |φn〉 are not normalized and not necessarily orthogonal with each other at
this stage. The density matrix of the A+B system is

ρ̂ = |ψAB〉 〈ψAB| =
∑

n

∑

n′

|un〉 〈un′| ⊗ |φn〉 〈φn′| . (23)

6



The reduced density matrix of A is thus:

ρ̂A = TrB[ρ̂] =

dimEB∑

m=1

〈vm|
[∑

n

∑

n′

|un〉 〈un′| ⊗ |φn〉 〈φn′|
]
|vm〉 (24)

=
∑

n

∑

n′

|un〉 〈un′| 〈φn|φn′〉 , (25)

having used 1̂ =
∑

m |vm〉〈vm|. Comparing to Eq. (21), we get 〈φn|φn′〉 = λnδnn′ ,
meaning that the |φn〉’s are in fact orthogonal. Introducing the normalized states |χn〉 =
|φn〉 /

√
λn leads to the (not unique !) Schmidt decomposition.

The Schmidt decomposition has several consequences. Firstly the reduced density
operators of the subparts A and B have the same form (same eigenvalues, but act in
different Hilbert space):

ρ̂A =
r∑

n=1

λn |un〉 〈un| and ρ̂B =
r∑

n=1

λn |χn〉 〈χn| . (26)

Their purity is thus the same. Besides, Eq. (26) gives us the method to calculate the
Schmidt decomposition of a bipartite state: trace over one of the subpart to get ρ̂A or
ρ̂B, expressed in whatever convenient basis, and diagonalize the reduced density ma-
trices to get the λn’s and the eigenstates |un〉 and |χn〉. Secondly, any local rotation,
i.e. a unitary operation acting on each subsystem independently, conserves the de-
composition: it can therefore neither entangle nor disentangle a state. To check this,
assume the Hamiltonian of A+B is H = HA +HB, with [HA, HB] = 0. The associated
evolution operator is U(t) = UA(t) ⊗ UB(t), with UA,B(t) = exp[−iHA,Bt/~]. Hence,
starting from a Schmidt form |ψAB〉 =

∑r
n=1

√
λn |un〉 ⊗ |χn〉, one gets U(t) |ψAB〉 =∑r

n=1

√
λn[UA(t) |un〉] ⊗ [UB(t) |χn〉]. The decomposition is thus preserved. So, once

again, to change the entanglement (create or destroy), the Hamiltonian must contain a
term HAB acting on the two parts of the systems at the same time. Examples of such
hamiltonians are:

1. the spin orbit coupling: HAB = AL̂ · Ŝ, or the Ising Hamiltonian HAB = JŜzAŜ
z
B;

2. The Jaynes-Cummings Hamiltonian: HAB = g(σ̂+â+ σ̂−â+).

Lastly, any mixed state described by the density operator ρ̂A =
∑r

n=1 λn |un〉 〈un| can be
“purified” by considering it as the partial trace of a pure state |ψAB〉 =

∑r
n=1

√
λn |un〉⊗

|χn〉 of larger system.

Schmidt decomposition and many-body physics. As soon as quantum particles
interact, entanglement between them is created and the question naturally arises as how
much entanglement. It turns out that there exist general statements about the amount
of entanglement in ensembles of quantum particles. To illustrate this, let us consider
the Transverse Field Ising model (TFI): it describes an ensemble of spin 1/2 particles
with an interaction of the form σ̂zi σ̂

z
j between pairs (i, j), placed in a magnetic field B

perpendicular to the z-axis. For a chain of N spins with nearest neighbor interactions,
the Hamiltonian is:

H = −J
∑

n

σ̂znσ̂
z
n+1 +Bσ̂xn (J > 0, B > 0) . (27)
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(a) (b)

Figure 2: (a) A chain of N spins prepared in a state |ψ〉 is split in two equal parts
and one calculates the Schmidt numbers λn. For the ground state |ψ0〉, only a
few have significant values, while for any random excited states they all contribute.
(b) Generic figure showing that the ground state of a local Hamiltonian features
non-negligible Schmidt numbers up to a bound dimension χ. Figures adapted from
[https://scipost.org/SciPostPhysLectNotes.5]

This model is used as an idealization of quantum magnets in condensed matter. It is
easy to calculate the ground state in limiting cases: if B � J , the σ̂x term dominates
and the ground state is (|↑〉 + |↓〉)⊗N ; if J � B, the interaction term is minimized
by the ferromagnetic states |↑, ↑, ↑ ...〉 and |↓, ↓, ↓ ...〉. In the general case B ∼ J , the
non-commutation between the two parts of the Hamiltonian, i.e. [σ̂znσ̂

z
n+1, σ̂

x
n] 6= 0,

makes it impossible to diagonalize them independently and one needs to resort to a full
diagonalization, which becomes challenging beyond a few tens of spins.

It was realized in the early 2000’s that the ground-states of many-body systems with
local interactions are actually quite special in that they do not feature a lot of entangle-
ment. This can be quantified mode precisely using the Schmidt decomposition: split the
chain into two parts A and B containing N/2 spins each and apply the decomposition
to the ground-state:

|ψgs〉 =
r∑

n=1

√
λn |un〉A |χn〉B . (28)

A priori, the rank is such that r . N/2. However it is much better than that: only
a few of the Schmidt numbers λn are non negligible. This is illustrated in Fig. 2(a)
where we show the λn’s for the ground state of the TFI model for a chain of 16 atoms
and B = 1.5J . By contrast, had we taken randomly any excited states, we would have
found that all the λn’s have nearly the same value. It turns out that this is a general
property of the ground states of local Hamiltonians (the demonstration is very hard and
way beyond what we discuss in this course), as shown in Fig. 2(b). The upper bound
in the sum is called the bound dimension χ: it represents the largest Schmidt number
that contribute significantly to the sum at a given level of approximation ε defined such
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Figure 3: Von Neumann entropy for a system of two qubits.

that:

‖|ψgs〉 −
χ∑

n=1

√
λn |un〉A |χn〉B ‖< ε . (29)

This is a considerable simplification for numerical simulations: instead of having to
diagonalize matrices of size 2N × 2N to find the ground state, it is enough to handle
matrices of dimension χ × χ (see also at the end of next section). This remark is at
the heart of modern numerical methods used to calculate the properties of many-body
systems, such as tensor networks and Matrix-Product states.

4 Entanglement entropies and their measurement

We have seen in Section 1.2 two examples of entangled states that do not have the same
reduced density matrix: the Bell state (13) features ρ̂A = 1̂/2, while the state (14) has
ρ̂A = (1− ε2) |0〉 〈0|+ ε2 |1〉 〈1|. The Bell state is the one for which we have the smallest
amount of information on each subpart: the two states |0〉 and |1〉 have exactly the same
probability, contrarily to the second one. This information content can be quantified by
introducing entanglement entropies.

Remember first that in statistical physics, one introduces the Shannon entropy as:

SShannon = −
∑

l

pl ln pl , (30)

where the pl’s are the probability to find a system in the micro-state l. One fundamental
assumption of statistical physics is the fact that for an isolated system, all the micro-
states realizing a given macrostate have the same probability pl = 1/Ω, with Ω the total
number of microstates that lead to this macrostate. This is equivalent to saying that
the entropy of the isolated system is maximal under the constraint

∑
l pl = 1. The fact

that all microstates have the same probability indicates that we have the least amount
of information possible about the microstate the system is in.

9



Von Neumann entropy. The extension of this idea in quantum physics leads to the
Von Neumann entropy for a system described by a density operator ρ̂:

SVN(ρ̂) = −Tr[ρ̂ ln ρ̂] . (31)

For a bipartite system in a pure state, the reduced density operators of A and B have
the same form thanks to the Schmidt decomposition (see Eq. 26). Thus

SVN(ρ̂A) = SVN(ρ̂B) = −Tr[ρ̂A ln ρ̂A] = −
r∑

n=1

λn lnλn , (32)

which is nothing but the Shannon entropy with pl = λl, the eigenvalues of the reduced
density matrices. We then find that for a subsystem in a pure state, i.e. |ψAB〉 separable,
r = 1, and λ = 1, SVN(ρ̂A) = 0: the von Neumann entropy of a pure state is 0, which
indicates again that we have perfect knowledge of the state the system is in.

Let us consider the case of two entangled qubits. The Schmidt decomposition applies
with two eigenvalues λ1 and λ2 = 1 − λ1 (remember that Tr[ρ̂A] = λ1 + λ2 = 1). The
evolution of SVN(λ1) is shown in Fig. 3. We do observe that the entropy is maximum for
λ1 = 1/2, and is 0 for λ1 = 0, 1. Hence we now have a quantitative criteria to measure
the degree of entanglement for a bipartite system: the larger the entanglement entropy,
the more entangled the state is (for this particular bipartition).

Rényi entropies. Experimentally however, the von Neumann entropy is not a conve-
nient quantity: we have seen above that the experimental reconstruction of the density
matrix ρ̂exp of a system of more than ∼ 8− 10 particles (or subparts) is too challenging.
We can therefore not calculate SVN from ρ̂exp, and besides no one has so far been
able to devise an experiment to measure directly SVN without the precise knowledge of
ρ̂exp. It turns out however that one can define other entropies that are experimentally
measurable. Those are the Rényi entropies defined as:

S
(α)
R (ρ̂) =

1

1− α ln(Tr[ρ̂α]) with α ≥ 1 . (33)

One can prove that S
(α)
R (ρ̂)→ SVN(ρ̂) for α→ 1 (see exercise A.2). The most interesting

one experimentally is the second-order Rényi entropy S
(2)
R (ρ̂), which is directly related

to the purity of ρ̂, Tr[ρ̂2].
By now, several experiments have measured Rényi entropies using either atoms or

superconducting qubits. They used mainly two types of methods which we illustrate
below. A first experiment by R. Islam et al. [Nature 528, 77 (2015)] explored the entan-
glement between 4 atoms placed in an optical lattices. When the lattice is very deep the
atoms are well isolated in each site, and independent from each other, hence should not
be entangled. On the contrary, when the lattice amplitude is weak, the atoms tunnel
between sites and become entangled: this is not obvious and we take this as a fact. The
idea to demonstrate the presence of entanglement is the following: divide the system
in two parts A and B and measure the purity Tr[ρ̂2A]. If entanglement is present in the

system, we should have Tr[ρ̂2A] < Tr[ρ̂2AB], or equivalently S
(2)
R (ρ̂A) > S

(2)
R (ρ̂AB). The

measurement of the purity is done in the following way: prepare two copies 1 and 2 of the

10
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Figure 4. Entanglement in the ground state of the Bose-Hubbard model. We study the Mott insulator to superfluid transition with four
atoms on four lattice sites in the ground state of the Bose-Hubbard model, Eq. (4). a. As the interaction strength U/Jx is adiabatically reduced
the purity of the subsystem A (green and blue, inset), Tr(⇢2

A), become less than that of the full system (red). This demonstrates entanglement in
the superfluid phase, generated by coherent tunneling of bosons across lattice sites. In terms of the second-order Rényi entanglement entropy,
S2(A) = � log Tr(⇢2

A), the full system has less entropy than its subsystems in this state. In the Mott insulator phase (U/Jx � 1) the full
system has more Rényi entropy (and less purity) than the subsystems, due to the lack of sufficient entanglement and a contribution of classical
entropy. The circles are data and the solid lines are theory calculated from exact diagonalization. The only free parameter is an added offset,
assumed extensive in system size and consistent with the average measured entropy in the full system. b. Second-order Rényi entropy of all
possible bi-partitioning of the system. For small U/Jx, all subsystems (data points connected by green and blue lines) have more entropy
than the full system (red circles), indicating full multipartite entanglement [45] between the four lattice sites. The residual entropy in the Mott
insulating regime is from classical entropy in the experiment, and extensive in the subsystem size. Right: The values of all Renyi entropies of
the particular case of U/Jx ⇡ 1 are plotted, to demonstrate spatial multipartite entanglement in this superfluid.

beam splitter operation alone, suggesting significantly higher
purity for the many-body state. The measured entropy is thus
a sum of an extensive classical entropy due to the imperfec-
tions of the beam splitter and any entanglement entropy.

Our site resolved measurement simultaneously provides in-
formation about all possible spatial partitionings of the sys-
tem. Comparing the purity of all subsystems with that of the
full system enables us to determine whether a quantum state
has genuine spatial multipartite entanglement where every site
is entangled with each other. Experimentally we find that this
is indeed the case for small U/Jx (Fig. 4b). In the super-
fluid phase, all possible subsystems have more entropy than
the full system, demonstrating full spatial multipartite entan-
glement between all four sites [33, 45]. In the Mott phase
(U/Jx � 1), the measured entropy is dominated by extensive
classical entropy, showing a lack of entanglement.

By measuring the second-order Rényi entropy we can cal-
culate other useful quantities, such as the associated mutual
information IAB = S2(A) + S2(B) � S2(AB). Mutual in-
formation exhibits interesting scaling properties with respect
to the subsystem size, which can be key to studying area laws
in interacting quantum systems [51]. In some cases, such as
in the ‘data hiding states’ [52], mutual information is more
appropriate than the more conventional two point correlators
which might take arbitrarily small values in presence of strong
correlations. Mutual information is also immune to present
extensive classical entropy in the experiments, and hence is
practically useful to experimentally study larger systems. In
our experiments (Fig. 5a), we find that for the Mott insula-

tor state (U/Jx � 1), the entropy of the full system is the
sum of the entropies for the subsystems. The mutual informa-
tion IAB ⇡ 0 for this state, consistent with a product state in
the presence of extensive classical entropy. At U/Jx ⇡ 10,
correlations between the subsystems begin to grow as the sys-
tem adiabatically melts into a superfluid, resulting in non-zero
mutual information, IAB > 0.

It is instructive to investigate the scaling of Rényi entropy
and mutual information with subsystem size [13, 51] since
in larger systems they can characterize quantum phases, for
example by measuring the central charge of the underlying
quantum field theory [11]. Figure 5b shows these quantities
versus the subsystem size for various partitioning schemes
with a single boundary. For the atomic Mott insulator the
Rényi entropy increases linearly with the subsystem size and
the mutual information is zero, consistent with both a product
state and classical entropy being uncorrelated between vari-
ous sites. In the superfluid state the measured Rényi entropy
curves are asymmetric and first increase with the system size,
then fall again as the subsystem size approaches that of the full
system. This represents the combination of entanglement en-
tropy and the linear classical entropy. This non-monotonicity
is a signature of the entanglement entropy, as the entropy for a
pure state must vanish when the subsystem size is zero or the
full system. The asymmetry due to classical entropy is absent
in the mutual information.

The mutual information between two subsystems comes
from the correlations across their separating boundary. For
a four site system, the boundary area ranges from one to three

3

cle number, as illustrated in Fig. 2a. This is due to the de-
structive interference of all odd outcomes. If the system is
composed of multiple modes, such as internal spin states or
various lattice sites, the total number parity Pi =

Q
k p

(k)
i

is equal to unity in the output ports i = 1, 2. Here the par-
ity for mode k, p

(k)
i = ±1 for even or odd number of parti-

cles, respectively. The well known Hong-Ou-Mandel (HOM)
interference of two identical single photons [42] is a special
case of this scenario. Here a pair of indistinguishable pho-
tons incident upon different input ports of a 50%-50% beam
splitter undergoes bosonic interference such that both photons
always exit from the same output port. In general, the average
parity measured in the many-body bosonic interference on a
beam splitter probes the quantum state overlap between the
two copies hPii = Tr(⇢1⇢2), where ⇢1 and ⇢2 are the density
matrices of the two copies respectively and h...i denotes aver-
aging over repeated experimental realizations or over identical
systems, as shown in Fig. 2b. Hence, for two identical sys-
tems, i.e. for ⇢1 = ⇢2 = ⇢, the average parity for both output
ports (i = 1, 2) equals the quantum purity of the many-body
state [21, 32, 33],

hPii = Tr(⇢2). (3)

Equation (3) represents the most important theoretical foun-
dation behind this work – it connects a quantity depending on
quantum coherences in the system to a simple observable in
the number of particles. It holds even without fixed particle
number, as long as there is no definite phase relationship be-
tween the copies (Supplementary material). From Eqs. (1)
and (3), detecting entanglement in an experiment reduces to
measuring the average particle number parity in the output
ports of the multi-mode beam splitter.

We probe entanglement formation in a system of interacting
87Rb atoms on a one dimensional optical lattice with a lattice
constant of 680 nm. The dynamics of atoms in the lattice is
described by the Bose-Hubbard Hamiltonian,

H = �J
X

hi,ji
a†

iaj +
U

2

X

i

ni(ni � 1), (4)

where a†
i , ai and ni = a†

iai are the bosonic creation and an-
nihilation operators, and the number of atoms at site i, re-
spectively. The atoms tunnel between neighboring lattice sites
(indicated by hi, ji) with a rate J and experience an onsite re-
pulsive interaction energy U . The Planck’s constant h is set
to 1 and hence both J and U are expressed in Hz. The di-
mensionless parameter U/J is controlled by the depth of the
optical lattice. Additionally, we can superimpose an arbitrary
optical potential with a resolution of a single lattice site by us-
ing a spatial light modulator (SLM) as an amplitude hologram
through a high resolution microscope (Supplementary mate-
rial). This microscope also allows us to image the number
parity of each lattice site independently [34].

To initialize two independent and identical copies of a state
with fixed particle number N , we start with a low entropy
2D Mott insulator with unity filling in the atomic limit [34]
and deterministically retain a plaquette of 2 ⇥ N atoms while

d

A B

A odd or even mixed

Figure 3. Many-body interference to probe entanglement in op-
tical lattices. a. A high resolution microscope is used to directly
image the number parity of ultra cold bosonic atoms on each lat-
tice site (raw images: green = odd, black = even). Two adjacent
1D lattices are created by combining an optical lattice and potentials
created by a spatial light modulator (SLM). We initialize two iden-
tical many-body states by filling the potentials from a low entropy
2D Mott insulator. The tunneling rates Jx, Jy can be tuned indepen-
dently by changing the depth of the potential. b. The atomic beam
splitter operation is realized in a tunnel coupled double well poten-
tial. An atom, initially localized in one of the wells, delocalizes with
equal probability into both the wells by this beam splitter. Here, we
show the atomic analog of the HOM interference of two states. The
joint probability P(1, 1) measures the probability of coincidence de-
tection of the atoms in separate wells as a function of normalized
tunnel time Jyt, with the single particle tunneling Jy = 193(4) Hz.
At the beam splitter duration (Jyt = 1/8) bosonic interference leads
to a nearly vanishing P(1, 1) corresponding to an even parity in the
output states. This can be interpreted as a measurement of the purity
of the initial Fock state, here measured to be ⇡ 0.90(4). The data
shown here are averaged over two independent double wells. The
blue curve is a maximum likelihood fit to the data, and the error-
bars reflect 1 � statistical error. c. When two copies of a product
state, such as the Mott insulator in the atomic limit are interfered on
the beam splitter, the output states contain even number of particles
globally (full system) as well as locally (subsystem), indicating pure
states in both. d. On the other hand, for two copies of an entangled
state, such as a superfluid state, the output states contain even num-
ber of particles globally (pure state) but a mixture of odd and even
outcomes locally (mixed state). This directly demonstrates entangle-
ment.

(a) (b)

Figure 4: Measurement of the purity of 4 atoms in an optical lattice. (a) One prepares
two copies of the system and perform a swap operation akin to a two-photon interference,
followed by the measurement of the parity of the number of atoms on each side. (b)
Results of the experiment for different partitions of the 4 atoms. From [Nature 528, 77
(2015)].

system, described by density operators ρ̂1,2. Weakening the potential barrier between the
two copies allows the tunneling between sites (see Fig. 4a). A two-atom interference akin
to the Hong-Ou-Mandel effect between photons occurs, that swaps the atoms between
copy 1 and 2. It then turns out (and this is far from being obvious) that the average
parity in the number of atoms in each well after this is directly Tr[ρ̂1ρ̂2] = Tr[ρ̂21] when
the two copies are identical. Figure 4(b) shows the result of the experiment: the Rényi
entropy of a sub-part increases when the atoms are more delocalized along the 4 sites,
as expected.

The second method demonstrated for the first time by T. Brydges et al. [Science
364, 260 (2019)] does not require two copies of the same system. The idea is to apply
on the system of N qubits a set of random unitary operations (i.e. rotations on the
Bloch sphere) u1⊗u2⊗ ...⊗uN . For a given set of unitaries, you repeat the experiment
many times to get the statistics of the outcomes of the experiment, and then repeat for
a new set of unitaries. It turns out (and this is very hard to show) that the correlations
between results is related to the purity of the density matrix. To see that it is plausible,
consider a single qubit, apply random rotation followed by a measurement in the z-basis
to obtain 〈σz〉. For a pure state the Bloch vector following any random rotation is always
on the Bloch sphere and the distribution of results is uniform between [−1, 1] (Fig. 5a).
If the state is mixed, the vector has a length smaller than 1, resulting in a narrower
distribution of the results. Thus, measuring the width of the distribution tells about the
purity Tr[ρ̂2]. The experiment was performed using a chain of up to 20 entangled ions,
each encoding a qubit. The authors measured the purity of a sub-system of NA ions.
An example of results for N = 10 ions is shown in Fig. 5(b): the maximum entropy
(hence lowest purity) is obtained for NA = N/2.

Entropy and Area Laws. We have seen in Sec. 3 that the Schmidt rank of the
ground state of a many-body system of N spins-1/2 is usually bounded by χ � 2N/2.
On the contrary, for most excited states taken randomly, χ ∼ 2N/2. Hence, in the ground
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Figure 1: Measuring second-order Rényi entropies via randomized measure-
ments. a) Single qubit Bloch sphere. The purity is directly related to the width of the
distribution of measurement outcomes after applying random rotations ui. Initial pure
state (blue) and mixed state (red) cases are shown. See text. b) Generalization to mul-
tiple qubits: Measuring up to 10-qubit partitions of a 20-qubit string, as shown (top).
Repeated measurements are made to obtain statistics, see text. Experimental data (bot-
tom): Histograms of the weighted sum X of cross correlations (as defined in Eq. (2)),
with mean values corresponding to the purities (dashed lines). Results are shown for two
di↵erent times during evolution under HXY, starting from a highly pure, separable state
and evolving into a high entropy state.

the system was initially prepared in the Néel ordered product state ⇢0 = | ih | with
| i = | #"# .. "i. This state was subsequently time-evolved under HXY (or H) into the
state ⇢(t). The coherent interactions arising from this time evolution generated varying
types of entanglement in the system. Subsequently, randomized measurements on ⇢(t)
were performed through individual rotations of each qubit by a random unitary (ui),
sampled from the CUE (25), followed by a state measurement in the z-basis. Each ui can
be decomposed into three rotations Rz(✓3)Ry(✓2)Rz(✓1), and two random unitaries were
concatenated to ensure that drawing of the ui was stable against small drifts of physical
parameters controlling the rotation angles ✓i (26). Finally, spatially resolved fluorescence
measurements realised a projective measurement in the logical z-basis. To measure the
entropy of a quantum state, NU sets of single-qubit random unitaries, U = u1 ⌦ · · · ⌦ uN ,
were applied. For each set of applied unitaries, U , the measurement was repeated NM

times.
In the first experiment, the 10-qubit state ⇢0 was prepared and subsequently time-

evolved under HXY (Eq. (3)), without disorder, for ⌧ = 0, . . . , 5 ms. Fig. 2 shows the
measured purities (a) and entropies (b) of all connected partitions that include qubit
1 during this quench. The overall purity (and thus entropy) remained at a constant
value of Tr [⇢2] = 0.74 ± 0.07, within error, throughout the time evolution, implying
that the time evolution was approximately unitary. The initial state’s reconstructed

4

0 20
10�3

10�2

10�1

0 1 2 3 4
10�2

10�1

100

101

0 1 2 3 4
10�2

10�1

100

101

T = 0ms

T = 10ms

a) b)

�1.0 �0.5 0.0 0.5 1.0
h�ziu

0.0

0.5

1.0
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Figure 2: Purity and second-order Rényi entropies of a 10-qubit system. Mea-
sured purity, (a), and second-order Rényi entropy, (b), of a Néel state, time-evolved under
HXY (J0 = 420 s�1, ↵ = 1.24), for connected partitions [1 ! i]. Dotted curves are purities
derived from a numerical simulation. Maximally mixed states with minimal purity fall
on the boundary of the shaded area. (c) Second-order Rényi entropy, S(2)(⇢A), of all
210 � 1 = 1023 partitions at t = 5 ms, with NA denoting the number of ions in a parti-
tion A. For all data points, NM = 150 and NU = 500. Error bars, which increase with
subsystem size (26), are standard errors of the mean X. Lines in (c) are drawn at three
standard errors above the full system’s entropy (black, dashed) and below the minimal
subsystem’s entropy (blue, solid).

5

(a) (b)

Figure 5: Measurement of the purity by application of random unitaries. (a) Example
on a single pure or mixed qubit. (b) Results for 10 ions. From [Science 364, 260 (2019)].

state, the entanglement entropy is such that:

SA ≈ −
χ∑

n=1

λn lnλn .
1

χ
lnχ× χ = lnχ , (34)

assuming λn ∼ 1/χ. Hence the entanglement entropy is related to the bound dimension
by SA ∼ lnχ. In thermodynamics, we are used to the entropy being extensive, i.e.
proportional to the volume of the system or the number of particles N . Things are
more subtle with entanglement entropies that can be non extensive. In general, for any
random states but the ground state, SA fulfills volume laws: SA ∼ N/2 ln 2 for N qubits
(bipartition). However, in the ground state it obeys area laws: SA is proportional to
the “area” between the two sub-parts A and B of the system. For example, in a chain
the “area” of the separation between the two subpart is 1. In a 2-dimensional square
array, it would be the perimeter of the boundary between the two subparts, hence L (see
Fig. 6). This is the recognition that most of the entanglement is located at the boundary
between the two sub-systems. Numerically, again, this is very useful: it means that in
2D, SA = αL ∼ α

√
N , hence the bound dimension is χ ∼ eα

√
N . This is the size of the

matrix one has to diagonalize. In 1D it is even better: SA, and thus χ are constant.

5 Multipartite entanglement and mixed entangled

states

So far we have described mainly bipartite entanglement. This concept naturally applies
to systems with two degrees of freedom (e.g. spin and orbital angular momentum, two
modes of a field, two spins...). Entanglement can be generalized to multipartite cases
following the same procedure as for the bipartite case. Take a multipartite system
consisting of N subparts 1, 2, 3, ...N and described by a pure state |ψN〉. The state is
separable if |ψN〉 = |φ1〉 ⊗ |φ2〉 ⊗ |φ3〉 ⊗ ... ⊗ |φN〉. If not separable, it is entangled. A
biseparable state can be decomposed in two separable parts containing n and N − n
subpart: |ψN〉 = |φn〉 ⊗ |φN − n〉, but each of the subpart can be entangled. A fully
entangled state is a state which is not biseparable with respect to any bipartition of the
system.
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Figure 6: Illustration of the area laws for the entanglement entropy, in 1 and 2 dimen-
sions.

As a matter of fact, most systems that we deal with experimentally are not pure
states, but rather mixed states. This raises the question of how to define entanglement in
this case. A bipartite system is separable when, for a realization k that has a probability
pk, ρ̂AB = ρ̂

(k)
A ⊗ ρ̂

(k)
B . Summing over all the possible realizations, one gets

Separable : ρ̂AB =
∑

k

pk ρ̂
(k)
A ⊗ ρ̂

(k)
B (35)

Entangled : ρ̂AB 6=
∑

k

pk ρ̂
(k)
A ⊗ ρ̂

(k)
B (36)

All these rather abstract definitions (of little practical use) suggest us that defining
entanglement is an extremely challenging problem, and as a matter of fact we are still
at the beginning of attempting to classify entanglement in multipartite systems.

Examples of multipartite states and classes of entanglement. Here, we revisit
briefly some ideas already introduced in Lecture 3, now making use of the density
operator. Consider the two states containing N qubits, already seen in Lecture 3:

|GHZN〉 =
1√
2

(|0, 0, 0, ...〉+ |1, 1, 1...〉) (Greenberger-Horne-Zeilinger state) ,(37)

|WN〉 =
1√
N

(|1, 0, 0, ...〉+ |0, 1, 0, ...〉+ ...+ |0, 0, ..., 1〉 (Werner state) . (38)

Both are entangled but belong to different entanglement class. The GHZ state has
however a major drawback: it is very sensitive to atom losses. Suppose that you lose
one of the N atoms of the state. As you don’t know in which state is the lost particle,
we have to trace over its two possible states to calculate the reduced density operator
of the N − 1 remaining particles. We obtain

ρ̂GHZ
N−1 = Tr0,1[ρ̂

GHZ
N ] =

1

2
|0〉⊗N−1 〈0|⊗N−1 +

1

2
|1〉⊗N−1 〈1|⊗N−1 . (39)

The operator is diagonal: we have lost the quantum coherences, and the N − 1 atoms
are now in a statistical mixture. The W state is not very useful for metrology, but is
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robust with respect to the loss of particles. Indeed (show it...):

ρ̂WN−1 = Tr0,1[ρ̂
W
N ] =

N − 1

N
|WN−1〉 〈WN−1|+

1

N
|000...〉 〈000...| . (40)

The state remains nearly pure for large N .
Experimentally, GHZ states of up to 24 trapped ions have been prepared and char-

acterized [Phys. Rev. X Quantum 2, 020343 (2021)]. Werner states of up to 200 atoms
have been reported [Phys. Rev. X 5, 031015 (2015)], but the characterization was not
direct and relied on assumptions on the system.

6 Entanglement witnesses

As probably obvious from the sections above, if preparing entangled states in the lab is
already a challenge, characterizing them is the experimentalist’s nightmare. The main
problem is to devise experimentally measurable criteria.

Bell test. For two qubits, we have seen that a violation of the Bell’s inequalities
characterizes entanglement. Hence, if one prepares a two-qubit state, subjects it to a Bell
test (i.e. measure the S parameter introduced by John Bell) and obtain a violation, then
the state is entangled. However, it is a very strong test: a state can be entangled without
violating Bell’s inequalities. This would for example be the case if the system prepared
in an experiment is described by the density matrix: ρ̂exp = (1 − ε)|ψB〉〈ψB| + ερ̂junk,
with |ψB〉 of the Bell states. This states leads to a violation of Bell’s inequality if
ε < 1− 1/

√
2 ≈ 0.3.

Fidelity. When the number of qubits grows, measuring the correlations or the density
matrix is too hard, and one has to resort to more global (but less precise...) criteria.
The fidelity is one of them. Assume that you want to prepare a target state |ψt〉, and
that you actually produce on the experiment a state |ψexp〉. The fidelity F is defined
as the square of the overlap between what you prepare and what you actually want to
prepare: F = |〈ψexp|ψt〉|2. If what you get in the experiment is a density matrix ρ̂exp,
then F = 〈ψt| ρ̂exp |ψt〉. It turns out that the fidelity is the easiest quantity to measure
experimentally (see homework later). A criterion you will derive in the homework states
that F > 1/2 ⇒ entanglement. For a two-qubit state to violate Bell’s inequality,
you need F > 1/

√
2 ≈ 0.7. However be careful that F ≤ 1/2 does not imply the

absence of entanglement ! Assume for example you want to prepare the state |φ+〉 =
(|01〉+ |10〉)/

√
2, and that your experiment generates instead |ψ+〉 = (|00〉+ |11〉)/

√
2:

F = 0 and yet the state prepared is entangled !

Entanglement witness. A witness operator Ŵ is defined such that 〈Ŵ〉 = Tr[ρ̂expŴ ] <

0 if ρ̂exp is entangled and 〈Ŵ〉 ≥ 0 if ρ̂exp is separable (the choice of the sign is a con-

vention). To be useful 〈Ŵ〉 has to be measurable in a lab. As a first example, take
Ŵ = 1− 2 |ψt〉 〈ψt|. Then 〈Ŵ〉 = 1− 2F is related to the measurement of the fidelity.
As another example, consider a chain of spin-1/2 particles for which the hamiltonian
H = −J∑n Ŝn · Ŝn+1 (J > 0). If you suppose that the N pair of atoms in the system

are all in a separable state, then 〈Ŝn · Ŝn+1〉 = 〈Ŝn〉 · 〈Ŝn+1〉, and |〈H〉| ≤ NJ/4. If on
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the contrary the pairs are, say, in the entangled state (|01〉 − |10〉)/
√

2, then one finds
〈H〉 = 3NJ/4 (use Ŝn · Ŝn+1 = (Ŝ2 − Ŝ2

n − Ŝ2
n+1)/2). Thus, if you take as a witness

〈Ŵ〉 = 1 − 2H/J , you are able to tell is there is entanglement in the system. The
advantage of the witness method lies in the fact that it only requires measuring global
observables, like here 〈H〉.

A Problem set for Lecture 4

A.1 Some derivations...

A.1.1 Density matrix of a qubit in a mixed state.

Take for the density matrix the form of Eq. (7).

1. Give the components of the Bloch vector u(θ, ϕ) as a function of the coefficients
of ρ̂.

2. Show that |ρ01|2 ≤ ρ00ρ11. In which case is it an equality ?

3. Show that |u| ≤ 1.

A.1.2 Partial traces and reduced density operators

1. Calculate the reduced density operators ρ̂± associated to the qubit states |ϕ±〉 =
(|00〉+ |01〉+ |10〉 ± |11〉)/2. Which of the two states is entangled?

2. Calculate the reduced density operators associated to the state (|00〉 + |01〉 +
|11〉)/

√
3.

3. Demonstrate that λij = 〈σ̂i ⊗ σ̂j〉 = Tr[ρ̂ σ̂i ⊗ σ̂j]/4 in equation (18).

4. Demonstrate equations (39) and (40).

A.2 Entropies

1. Show that SVN(ρ̂A) = −∑r
n=1 λn lnλn (notations of the lecture).

2. Consider the Rényi entropy. Show that S
(α)
R (ρ̂) = 1

1−α ln[
∑

k p
α
k ], with pk the

eigenvalues of ρ̂, such that
∑

k pk = 1.

3. We want to show that S
(α)
R (ρ̂)→ SVN(ρ̂) for α→ 1. To do so write, that

∑
k p

α
k =∑

k pk exp[(α − 1) ln pk] and Taylor expand the exponential for α → 1 to recover
the expression of the Shannon entropy.

4. Use the von Neumann entropy to decide which of the two states is the most
entangled: |ψ1〉 =

√
2/7 |00〉+

√
5/7 |11〉 or |ψ2〉 =

√
2/3 |01〉+

√
1/3 |10〉 ?

5. Same question as before using the second-order Rényi entropy.
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