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Exact solutions to most problems in quantum physics, as in all other fields of physics,
do not exist despite the fact that the equations to solve are known. Numerical calcula-
tions are often possible (but not always...) using computers. Approximate methods are
therefore fruitful to get quick estimates, check the plausibility of a numerical result, and
to gain intuition on physical effects. Here we summarize and illustrate widely used ap-
proximation methods: time-independent perturbation theory, including the variational
method and the effective hamiltonian approach; time-dependent perturbation theory
and “Fermi golden rule”. We will follow a practical approach, avoiding the usual lengthy
derivations and justifications. More details can be found in standard textbooks, such
as: “Mécanique quantique” by J.-L. Basdevant and J. Dalibard, chapters 9 and 17, or
on Wikipedia.

Most situations in perturbation theory start from a problem that we know how to
solve. There are not that many of them: particle in an infinite square well or harmonic
potential, charged particle in a Coulomb potential, spin in a magnetic field, and that
is about it. In practice this means having solved the eigenvalue problem: H0 |φn〉 =
En |φn〉, with H0 the hamiltonian describing the problem. One then adds a perturbation
V̂ (which may be time-dependent), assumed to be small in a sense which usually means
that the matrix elements Vkn = 〈φk| V̂ |φn〉 � |Ek − En|.

1 Time-independent perturbation theory

Here, the goal is to calculate the corrections to the eigen-energies and eigen-states as a
function of a small parameter ε ∼ Vkn/|Ek − En|. We will not discuss the problem of
the convergence of the expansion in ε. Most general results can be easily inferred from
the study of the two-level system, which we thus start with.

1.1 The two-level system

We consider two states |g〉 and |e〉 associated to the energies Eg and Ee supposed to

be known. The perturbation V̂ has matrix elements Vgg = 〈g| V̂ |g〉, Vee = 〈e| V̂ |e〉,
Vge = 〈g| V̂ |e〉 = Veg and the total hamiltonian is:

H = H0 + V̂ =

(
Eg 0
0 Ee

)
+

(
Vgg Vge
Veg Vee

)
. (1)
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A convenient procedure to quickly diagonalize the 2× 2 matrix consists in writing it in
the following form:

H =
1

2
(Eg + Ee + Vgg + Vee) Îd +

1

2

√
∆E2 + 4V 2

eg

(
− cos θ sin θ
sin θ cos θ

)
(2)

with ∆E = Ee+Vee−Eg−Vgg, cos θ = ∆E/
√

∆E2 + 4V 2
eg, sin θ = 2Veg/

√
∆E2 + 4V 2

eg.
The eigen-energies and corresponding eigenstates are:

E− =
1

2
(Eg + Ee + Vgg + Vee)−

1

2

√
∆E2 + 4V 2

eg and ˜|g〉 = cos
θ

2
|g〉 − sin

θ

2
|e〉 (3)

E+ =
1

2
(Eg + Ee + Vgg + Vee) +

1

2

√
∆E2 + 4V 2

eg and ˜|e〉 = cos
θ

2
|e〉+ sin

θ

2
|g〉 . (4)

So far the results are exact. Let us now Taylor expand the expressions of the energies
and states as a function of ε ∼ Vnm/|Ee − Eg|, using

√
1 + x ≈ 1 + x/2 +O(x2):

E− ≈ Eg + Vgg −
V 2
eg

Ee − Eg
+ ... and ˜|g〉 ≈ |g〉 − Veg

Ee − Eg
|e〉+ ... (5)

E+ ≈ Ee + Vee +
V 2
eg

Ee − Eg
+ ... and ˜|e〉 ≈ |e〉+

Veg
Ee − Eg

|g〉+ ... (6)

Here the energies are expanded up to second order in ε and the state to first order.
These expressions call for three important remarks (see also Fig. 1a).

1. The first-order corrections on the energy Eg,e are the average values of the pertur-

bation V̂ for the unperturbed states.

2. The second-order correction always pushes the coupled states away: they “repel”
each other.

3. The effect of the coupling is to admix the unperturbed states to other states. For
example, one says that the |g〉 state “acquires some excited state character”. This
is jargon, but worth remembering...It has important applications: giving a lifetime
to a ground state by admixing it with an excited state, enhancing the strength of
interactions between atoms by coupling their ground state to states where they
strongly interact,...

1.2 General case

All quantum physics textbooks derive the corrections to the energies and states as a
power expansion of the perturbation written in the form εV̂ , with ε � 1. However the
final results can be inferred from the two-level case of the previous section: if a given
unperturbed state |φn〉 of an hamiltonian H0 is coupled to other states |φk〉 (including
itself...) by a perturbation V̂ , one adds independently the effect of all two-level systems
(n, k) (see Fig. 1b), leading to the second order expression for the energies:

Ẽn = En + 〈φn| V̂ |φn〉+
∑
k 6=n

〈φn| V̂ |φk〉 〈φk| V̂ |φn〉
En − Ek

+ ..., (7)
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Figure 1: Time independent perturbation theory. (a) Case of a two-level system. (b)
General case.

with 〈φn| V̂ |φk〉 〈φk| V̂ |φn〉 = |Vnk|2, and the first-order expression for the states.

˜|φn〉 = |φn〉+
∑
k 6=n

|φk〉
〈φk| V̂ |φn〉
En − Ek

+ ... (8)

The second-order expression for the states is rarely used. These expressions are worth
remembering. To recall the sign of the denominator En − Ek, remember that the per-
turbation always shifts down the energy of the ground state and that Egs − Ek < 0.

Degenerate case. The above expressions have an obvious flaw when the energies En
are degenerate, i.e., gn > 1 orthogonal states |φαn〉 (1 ≤ α ≤ gn) have the same energy:
the denominator of the expression (7) is 0 for some states, and the perturbative approach
is not valid. In this case, the zeroth-order eigenstates and the first-order energies are
obtained by diagonalizing H0 + V̂ in each subspace En associated to the energy En.

1.3 Examples (solutions in Appendix)

A. Zeeman effect on an atom. The atomic states are characterized by several
quantum numbers: n, j and mj, the two last ones being associated to the total angular

momentum Ĵ = L̂ + Ŝ. The atom possesses a magnetic moment µ = γJ. Calculate the
energies of the atom placed in a magnetic field B aligned along the z-axis.

B. Non-harmonic oscillator. Consider an oscillator with H = p2/(2m) +mω2x2/2 +
gx4. Remembering that x = x0(a + a+), with x0 =

√
~/(2mω), calculate the energy

shift of the ground state |n = 0〉.

C. Stark shift of an atom and polarizability. Place an hydrogen atom in an electric
field E. The hamiltonian is HS = qẑE. Calculate the energy shift of the ground state,
and the expression of the polarizability α, defined by ∆Egs = −ε0αE2/2. Calculate the
perturbed ground state, and explain why the atom now has an average dipole moment.

D. Van der Waals interaction between two atoms. Two neutral atoms interact
by the dipole-dipole interaction described by the hamiltonian: HI = d̂1zd̂2z/(4πε0R

3)
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(we neglect here the angular dependence). Assume that each atom has two states, for
example ψns and ψnp as in alkali atoms, separated by an energy ~ω0. Explain why the
ground-state interaction energy is of the form −C6/R

6 and calculate C6.

E. Light-shift induced by a laser. A two-level atom with states |g〉 and |e〉, separated
by a transition at frequency ω0 is coupled to a laser field (frequency ω), containing N
photons. We consider the (atom + field) system with states |g,N〉 and |e,N − 1〉, and
a matrix element ~Ω coupling the two. Calculate the energy shift of the states as a
function of Ω and the detuning ∆ = ω − ω0 for Ω� |∆|.

2 The effective hamiltonian approach

In many situations, the spectrum of the unperturbed hamiltonian consists of manifolds
were states are close in energy, the various manifolds being separated by a large energy
gap, as represented in Fig. 2(a). This situation is often encountered in condensed matter
with energy bands or in atoms with hyperfine and optical transitions. We assume that
the perturbation V̂ only has matrix elements between states belonging to different man-
ifolds. We will see that, as a consequence of the perturbation, states within a manifold
get coupled, and that the situation can be described by an effective hamiltonian.
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Figure 2: Effective hamiltonian. (a) The spectrum consists of several manifolds of states
with comparable energies, separated by a gap. (b) Three-state model.

2.1 A three-state model

Consider the simplest situation or two states |1〉 and |2〉, with energies E1,2, and a third
state |e〉 with energy Ee such that |Ee − E1,2| � |E1 − E2|, as shown in Fig. 2(b). The
perturbation couples |1〉 and |2〉 to |e〉 with matrix element V1e and V2e. The matrix of
the hamiltonian is:

H =

E1 0 V1e

0 E2 V2e

Ve1 Ve2 Ee

 . (9)
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Any state of the system has the form |ψ〉 = c1 |1〉 + c2 |2〉 + c3 |3〉. Finding the eigen-
energies amounts to solving the system of coupled equations:E1 0 V1e

0 E2 V2e

Ve1 Ve2 Ee

c1

c2

ce

 = E

c1

c2

ce

 . (10)

Here c1,2 depend on ce. Using the third equation

ce =
1

E − Ee
(Ve1c1 + Ve2c2) (11)

and eliminating ce in the two first equations, leads to a closed system for (c1, c2):(
E1 − |Ve1|2

Ee−E
V1eVe2
E−Ee

V2eVe1
E−Ee

E2 − |Ve2|2
Ee−E

)(
c1

c2

)
= E

(
c1

c2

)
. (12)

In this form, it is not too useful, as E appears on both side in a complicated way. But
now assume you are only interested in the energy shifts of |1〉 and |2〉: the perturbation
being weak (|V1e|, |Ve2| � ∆E), E ∼ E1,2 � Ee. Hence Eq. (13) becomes:(

E1 − |Ve1|
2

∆E
−V1eVe2

∆E

−V2eVe1
∆E

E2 − |Ve2|
2

∆E

)(
c1

c2

)
≈ E

(
c1

c2

)
, (13)

with ∆E ≈ Ee −E1 ≈ Ee −E2. Therefore the elimination of ce and the approximation
E ∼ E1,2 � Ee lead to an effective hamiltonian restricted to the ground state manifold:

Heff =

(
E1 − |Ve1|

2

∆E
−V1eVe2

∆E

−V2eVe1
∆E

E2 − |Ve2|
2

∆E

)
, (14)

with ∆E the energy of the gap between ground and excited states. This effective
hamiltonian couples the two states |1〉 and |2〉, with an effective, second-order matrix
element: Veff = −V1eVe2/∆E. The energies are also shifted, as they should according to
the discussion of Section 1. Moreover, as |V1e|, |Ve2| � ∆E, |ce| � 1. The jargon used
for what we have done here is: “obtaining an effective low-energy theory”.

2.2 General case

The general procedure to obtain an effective hamiltonian, named the Schrieffer-Wolff
transformation, is quite formal (see e.g. “Photons and Atoms”, Cohen-Tannoudji,
Dupont-Roc and Grynberg, Complement B1). The result is however a direct gener-
alization of the 3-level model we have just seen. For two states |n〉 and |m〉 in the lower
manifold and many states |k〉 in the higher manifolds (see Fig. 2a), the second-order ef-
fective coupling between |n〉 and |m〉 is, with the gap energy ∆Ek ≈ Ek−En ≈ Ek−Em:

V nm
eff =

1

2

∑
k

〈n| V̂ |k〉 〈k| V̂ |m〉
(

1

En − Ek
+

1

Em − Ek

)
≈ −

∑
k

VnkVkm
∆Ek

. (15)
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2.3 Examples (solutions in Appendix)

F. Raman transition. Consider an atom with two degenerate ground-states |1〉 and
|2〉 and an excited state |e〉 with an energy ~ω0. They are coupled to two laser beams
(frequency ω, photon numbers N1, N2), with respective Rabi frequency Ω1e and Ω2e. We
suppose |∆| = |ω − ω0| � Ωie. Calculate the coupling between the states |1〉 and |2〉.

G. Effective coupling in a double-well. Consider two sites a and b of a double well
potential. We place two different particles 1 and 2 (e.g. a Rb and a Cs atom), each in
the ground state of the wells. They can tunnel with an amplitude J , but placing two
particles in the same well costs an energy U � J due to their interaction. Calculate the
amplitude of the coupling between the states |1 : a; 2 : b〉 and |2 : a; 1 : b〉.

H. Exchange interaction between two atoms via a cavity mode. We place
two two-level atoms (states |g〉 , |e〉, transition at ω0) in an empty cavity defining an
electromagnetic mode at frequency ω. The amplitude for an atom to drop or absorb a
photon in/from the cavity is ~Ω. If the two atoms are initially prepared in |e, g〉, in an
empty cavity, show that they are coupled to the state |g, e〉, and calculate the transition
amplitude for |ω − ω0| � Ω.

3 The variational method

If in many cases one does not know the exact solution of a problem, one may guess
what it should look like. For example, a good guess for the ground state wavefunction
of the finite depth square potential is a gaussian, parametrized by its width σ. The best
approximation of the ground state is obtained by varying the width in order to minimize
the energy calculated using the trial function, also called an “Ansatz”.

This way of proceeding, named the variational method, relies on the following con-
sideration. Take a trial state |φ〉 that you think is a reasonable form for the problem
described by an hamiltonian H. Use it to compute the energy E[φ], which is a functional
of the state:

E[φ] =
〈φ|H |φ〉
〈φ|φ〉 . (16)

Then E[φ] ≥ E0, the energy of the ground state. Indeed, the state |φ〉 can be decom-
posed on the eigenstates |φn〉 of H (even if you don’t know them...): |φ〉 =

∑
n cn |φn〉.

Assuming that |φ〉 is normalized:

E[φ] =
∑
n

|cn|2En ≥ E0

∑
n

|cn|2 = E0 . (17)

Hence minimizing E[φ] by varying |φ〉, one obtains an upper bound of the ground-state
energy. Let us consider a few examples (solutions in Appendix).

I. Ground state of the harmonic oscillator. Take H = − ~2
2m

d2

dx2
+ mω2x2/2 and

try the normalized wavefunction: φσ(x) = exp(− x2

2σ2 )/(
√
πσ)1/2. The energy functional
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is:

E[σ] =

∫ ∞
−∞

φ∗σ(x)H(x)φσ(x) dx =
~2

4mσ2
+

1

4
mω2σ2, (18)

using the gaussian integrals:
∫∞
−∞ exp(−x2/σ2)dx =

√
πσ, and

∫∞
−∞ x

2 exp(−x2/σ2)dx =√
πσ3/2. Find the value of σ that minimizes the energy and the corresponding energy.

J. Size of a Bose-Einstein condensate. We consider a collection of bosonic atoms,
all with the same wavefunction φ(x), placed in an harmonic potential. The atoms
interact with each other, and the interaction potential has the form gφ(x)2. The total
hamiltonian is therefore H = − ~2

2m
d2

dx2
+ mω2x2/2 + gφ(x)2. Use a gaussian ansatz to

estimate the ground state size of the wavefunction. Assume that the kinetic energy is
negligible with respect to the interaction energy and give the condition under which this
is valid.

K. Ground state of He atom. The hamiltonian for the two electrons of the He atoms
restricted to the Coulomb interaction is

H =
p2

1

2m
− 2e2

r1

+
p2

2

2m
− 2e2

r2

+
e2

r12

with e2 =
q2

4πε0
. (19)

It has no analytical solution. One way to calculate the ground state is to use for each
electron an ansatz wavefunction of the form ψs(r) =

√
Z3/(πa3

0) exp(−Zr/a0), with Z
a variable describing the screening of the nucleus by one of the electron for the other
one. Calculations yield, with |φ12〉 = |ψs1, ψs2〉 the two-electron wave function,

〈φ12|
p2

1

2m
− 2e2

r1

|φ12〉 =
Z2e2

2a0

− 2Ze2

a0

and 〈φ12|
e2

r12

|φ12〉 =
5Ze2

8a0

. (20)

Calculate the approximate ground state energy. The experimental value is −78.6 eV.

L. Linear combination of atomic orbitals. This method is widely used in chemistry
to calculate the molecular orbitals of homo- or hetero-nuclear molecules. Consider for
example the two identical atoms A and B (homonuclear case) described by a total
Hamiltonian H, with atomic orbitals |φA,B〉, such that E0 = 〈φA,B|H |φA,B〉. Construct
the molecular orbital by linear combination: |φ〉 = cA |φA〉 + cA |φB〉. Calling S =
〈φA|φB〉 and β = 〈φA|H |φB〉 = 〈φB|H |φA〉, use the variational method to find the
coefficients cA and cB (supposed real), as well as the energies.

4 Time-dependent perturbation theory

Here, we want to know the time evolution of a system prepared at t = 0 in an initial
eigenstate |φi〉 of H0 associated to the energy Ei (i.e., H0 |φi〉 = Ei |φ〉i) after we turn

on a perturbation V̂ (t). The perturbation will couple |φi〉 to other eigenstates |φn〉, so
that the state of the system at t is of the form

|ψ(t)〉 =
∑
n

cn(t) e−i
En
~ t |φn〉 . (21)
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The time-evolution of the cn’s is ruled by the Schrödinger equation:

i~
d

dt
|ψ(t)〉 = (H0 + V̂ (t)) |ψ(t)〉 ⇒ ċn(t) =

1

i~
∑
k

Vnk(t)e
iωnkt ck(t) , (22)

with ωnk = (En−Ek)/~ the Bohr frequencies. So far the expressions are exact, but the
equations are difficult to solve as they are coupled.

Let us now make an approximation. At t = 0, ck(0) = δki, and if the perturbations
Vnk are weak, we expect that ci(t) ≈ 1. As a consequence, to first order in Vni/(~ωni),

ċn(t) ≈ 1

i~
Vni(t)e

iωnit for n 6= i⇒ cn(t) ≈ 1

i~

∫ t

0

Vni(t
′)eiωnit

′
dt′ . (23)

Hence the transition amplitude from i to n is the Fourier transform of the matrix element
coupling the two states, and the corresponding probability is:

Pi→n(t) ≈ 1

~2

∣∣∣∣∫ t

0

Vni(t
′)eiωnit

′
dt′
∣∣∣∣2 . (24)
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Ei ⇡ En

Figure 3: Time-dependent perturbation theory. (a) Function sin2 x/x2 involved in the
transition probability. (b) A single state |i〉 coupled to a quasi-continuum of states |φn〉.
Only the states |φn〉 with an energy close to Ei contribute significantly to the transition.

Constant perturbation. We assume first that V̂ is independent of time. Then,

Pi→n(t) ≈ 4|Vni|2
(~ωni)2

sin2

(
ωnit

2

)
. (25)

The transition probability oscillates as a function of t at the Bohr frequency ωni, with an
amplitude 4|Vni|2/(~ωni)2. The validity of the perturbation approach is consistent with
|Vni| � ~ωni. Also, fixing the duration T of the perturbation, the transition probability,
of the form sin2 x/x2, is maximal for En = Ei (see Fig. 3a), and Pmax

i→n = |Vni|2T 2/~2.
This is valid at short times, for T � ~/|Vni|.

Sinusoidal perturbation. Frequently, the perturbation has the form V̂ cosωt as for a
laser or microwave field sent onto an ensemble of atoms, for example. Then

Pi→n(t) ≈ |Vni|
2

4~2

∣∣∣∣ei(ω+ωni)t − 1

ω + ωni
+
ei(ωni−ω)t − 1

ωni − ω

∣∣∣∣2 . (26)
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In the near-resonant case, |ω − ωni| � ω + ωni, and

Pi→n(T ) ≈ |Vni|
2

~2

sin2[(ω − ωni)T/2]

(ω − ωni)2
. (27)

Once again, the transition probability is the largest when energy is conserved, i.e.,
En = Ei + ~ω, and the width of the resonance fulfills ∆ω × T ∼ 1.

5 “Fermi Golden rule”

Let us calculate the probability P (T ) that the systems leaves the state |φi〉, irrespective
of the state |φn〉 it ends up in. The final states being all orthogonal with each other, we
sum the probabilities

P (T ) =
∑
n

Pi→n(T ) =
∑
n

4|Vni|2
~2

sin2[ωniT/2]

ω2
ni

, (28)

for the case of a constant perturbation.
We consider now the situation where many states |φn〉 with energy En ≈ Ei are

contained within the linewidth ∆ω ∼ 1/T of the excitation (see Fig. 3b). This situation
is called a quasi-continuum and allows one to replace the sum by an integral, the energy
being considered as a continuous variable:∑

n

→
∫
ρ(En)dEn , (29)

where ρ(E) is called the density of state and measures the number of states with an
energy between E and E + dE. Thus

P (T ) =

∫
dEn ρ(En)

4|Vni|2
~2

sin2(ωniT/2)

ω2
ni

. (30)

In most cases, the density of state is a slowly varying function with E, and so is the
matrix element Vni = Vfi. They may therefore be taken out of the integral, as the
sin2 x/x2 function is peaked around Ei:

P (T ) =
2|Vfi|2T

~
ρ(Ei)

∫
sin2(ωniT/2)

(ωniT/2)2
d

(
EnT

2~

)
. (31)

A change in variable x = ωniT/2 and the use of
∫∞
−∞ sin2 x/x2 dx = π leads to the rate

of transition out of the initial state to a final state with energy Ef = Ei.

Γ =
P (T )

T
=

2π

~
|Vfi|2ρ(Ei) . (32)

This last formula is called the ”Fermi golden rule”. It is used in many contexts when
an initial state is coupled to a continuum, such as in a collision between two particles,
the decay of a nucleus or an atom, the coupling of electrons to phonons in a crystal...
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Warning note: the Fermi rule should not be learned by heart! You should re-derive
its expression for your case, starting from Eqs. (25,26). For example, had we considered
the sinusoidal perturbation V̂ cosωt, we would have obtained instead of Eq. (32):

Γ =
P (T )

T
=

π

2~
|Vfi|2ρ(Ei + ~ω) . (33)

Besides, we used above the energy as the continuous variable, but in other situations,
you may have to use variables such as the wavevector of a photon emitted by an atom,
or of a phonon in a solid, or an angular momentum associated to the rotation of a
molecule,... However, the structure of the transition rate will always look the same:

dΓ ∼ 2π

~
× |Vif |2 × δ(Ei − Ef )× dQ . (34)

Appendix: solutions of the problems

A. Zeeman effect on an atom. The energy of a state |n, j,mj〉 is En in the absence
of field. The Hamiltonian of a magnetic moment placed in a magnetic field B is H =
−µ ·B = −γĴzB. Hence, the first order shift in energy is ∆E(1) = −γBmj for a state
|n, j,mj〉. The total energies are thus En − γBmj, with |mj| ≤ j. Valid as long as
γBj � En+1 − En.

B. Non-harmonic oscillator. The energy shift of |n = 0〉 is, to first order, ∆E(1) =
〈n = 0| gx̂4 |n = 0〉 = gx4

0 〈n = 0| (â+ â+)4 |n = 0〉 = 3gx4
0.

C. Stark shift of an atom and polarizability. The wavefunctions of the lowest
states are ψ1s, ψ2s and ψ2p. Due to symmetry, the matrix elements of ẑ are non zero only
between states of opposite parity, such as s(l = 0) and p(l = 1). Hence, 〈ψ1s| ẑ |ψ1s〉 = 0

and ∆E
(1)
gs = 0. The second order shift of the ground state 1s is

∆E(2)
gs =

d2
spE

2

E1s − E2p

with dsp = 〈ψ1s| qẑ |ψ2p〉 .

As E1s < E2p, ∆E
(2)
gs = −ε0αE2/2 < 0, with α = 2d2

sp/(ε0|E1s−E2p|). The ground-state
is modified as:

|ψ̃1s〉 = |ψ1s〉 −
dspE

E1s − E2p

|ψ2p〉 .

The average dipole is 〈d〉 = 〈ψ̃1s| qẑ |ψ̃1s〉 = ε0αE.

D. Van der Waals interaction between two atoms. We consider the two-atom
state |ns, ns〉, where each atom is in the state |ns〉. The dipolar interaction hamiltonian
HI couples it to |np, np〉 separated by an energy 2~ω0. The first order shift is again null,
and the second order shift is:

∆E(2)
ss =

| 〈np, np|HI |ns, ns〉 |2
Ess − Epp

= −
(

d2
sp

4πε0R3

)2
1

2~ω0

.
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It is of the form −C6/R
6, and corresponds to the van der Waals interaction between

two neutral particles.

E. Light-shift induced by a laser. The two states |g,N〉 and |e,N − 1〉 are separated

in energy by Eg,N − Ee,N−1 = ~(ω − ω0). Thus, ∆E
(2)
g,e = ±~Ω2/∆.

F. Raman transition. The system involves three partners: the atom and the two
lasers, and the relevant states are thus |1, 2, e;N1;N2〉. The state |1;N1;N2〉 is coupled
to the state |e;N1 − 1;N2〉 by the first laser (absorption of a photon). This last state is
then coupled to |2, N1 − 1, N2 + 1〉 by the second laser (emission of a photon in the laser
mode). The states |1;N1;N2〉 and |2, N1 − 1, N2 + 1〉 are still degenerate, and separated
in energy from the state |e;N1 − 1;N2〉 by ~(ω0 − ω). The effective coupling between
the states |1〉 and |2〉 is thus Ω1eΩ2e/|∆|.

G. Effective coupling in a double-well. The swap of the particles involves, for
example, the first particle to tunnel onto site b (amplitude J), leaving site a empty. The
corresponding state |0 : a; 1, 2 : b〉 has an energy U above the initial state |1 : a; 2 : b〉
(assuming U > 0). Then, the second particle tunnels onto site a leading to the state
|2 : a; 1 : b〉 (amplitude J). The amplitude of this coupling is thus J2/U . The swap
can also start with the second particle hopping first onto site a. This gives the same
amplitude J2/U , and thus the total amplitude of the coupling is 2J2/U .

H. Exchange interaction between two atoms via a cavity mode. We have to
consider the system {atom 1, atom 2, field}. The initial state is |e, g, n = 0〉, with n
the number of photons in the cavity. The first atom emits a photon in the cavity mode
(frequency ω) leading to the intermediate state |g, g, n = 1〉 with an energy difference
with respect to the first state ~(ω − ω0). The photon gets reabsorbed by the second
atom, leading to |g, e, n = 0〉. The amplitude of the coupling when |ω−ω0| � Ω is thus
~Ω2/|ω − ω0|.

I. Ground state of the harmonic oscillator. Solving dE[σ]/dσ = 0 yields σmin =√
~/mω, and the corresponding energy Emin = ~ω/2. In this case, we find the exact

answer, just because we have done the good guess! Had we, for example, used for the trial
function a lorentzian: φa(x) ∼ 1/(x2 + a2), we would have found Emin = ~ω/

√
2 ≥ E0.

J. Size of a Bose-Einstein condensate. Using a gaussian Ansatz φσ(x) and the
gaussian integrals given for the previous example, one finds:

〈H〉 =
~2

4mσ2
+

1

4
mω2σ2 + g

∫ ∞
−∞

φ(x)4dx =
~2

4mσ2
+

1

4
mω2σ2 +

g√
2πσ

.

Neglecting the kinetic energy term and solving d〈H〉/dσ = 0 gives σm = (
√

2
π

g
mω2 )1/3.

The assumption is valid when the ratio of the kinetic energy to the interaction energy
is negligible: ~2/(mσ2

m)� (g/σm) or equivalently g/~�
√

~ω/m.
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K. Ground state of He atom. Using the expressions given in the text

〈H〉 = 2

(
Z2e2

2a0

− 2Ze2

a0

)
+

5Ze2

8a0

=
e2

2a0

(
2Z2 − 27

4

)
.

Minimizing with respect to Z gives Zm = 27/16 < 2: the second electron screens
partially the charge Zn = 2 of the nucleus. The corresponding ground state energy
is −2 × (27/16)2 × (e2/2a0) = −77.5 eV. This value is much closer to the measured
one than if we had neglected the interaction between electrons (we would have found
−2× 4× 13.6 = 108.8 eV).

L. Linear combination of atomic orbitals. The energy functional is

E[cA, cB] =
〈φ|H |φ〉
〈φ|φ〉 =

(c2
A + c2

B)E0 + 2cAcBβ

c2
A + c2

B + 2cAcBS
.

The minimization implies solving the set of two coupled equation ∂E
∂cA

= 0, ∂E
∂cB

= 0.

This yields the equation (c2
AcB− c3

B)(E0S−β) = 0, hence cA = ±cB. The normalisation
condition 〈φ|φ〉 = 1 gives cA,B = ±1/

√
2(1± S), and the corresponding energies are

E± = (E0 ± β)/(1± S).
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