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Exact solutions to most problems in quantum physics, as in all other fields of physics,
do not exist despite the fact that the equations to solve are known. Numerical calcula-
tions are often possible (but not always...) using computers. Approximate methods are
therefore fruitful to get quick estimates, check the plausibility of a numerical result, and
to gain intuition on physical effects. Here we summarize and illustrate widely used ap-
proximation methods: time-independent perturbation theory, including the variational
method and the effective hamiltonian approach; time-dependent perturbation theory
and “Fermi golden rule”. We will follow a practical approach, avoiding the usual lengthy
derivations and justifications. More details can be found in standard textbooks, such
as: “Mécanique quantique” by J.-L. Basdevant and J. Dalibard, chapters 9 and 17, or
on Wikipedia.

Most situations in perturbation theory start from a problem that we know how to
solve. There are not that many of them: particle in an infinite square well or harmonic
potential, charged particle in a Coulomb potential, spin in a magnetic field, and that
is about it. In practice this means having solved the eigenvalue problem: Hy|¢,) =
E, |¢,), with Hy the hamiltonian describing the problem. One then adds a perturbation
1% (which may be time-dependent), assumed to be small in a sense which usually means
that the matrix elements Vi, = (x| V |dn) < |Ex — En|.

1 Time-independent perturbation theory

Here, the goal is to calculate the corrections to the eigen-energies and eigen-states as a
function of a small parameter € ~ Vi, /|Ex — E,|. We will not discuss the problem of
the convergence of the expansion in €. Most general results can be easily inferred from
the study of the two-level system, which we thus start with.

1.1 The two-level system

We consider two states |g) and |e) associated to the energies E, and E. supposed to
be known. The perturbation V' has matrix elements V,, = (g|V'|g), Vee = (e|V |e),
Vye = (9| V' |e) = V., and the total hamiltonian is:
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A convenient procedure to quickly diagonalize the 2 x 2 matrix consists in writing it in
the following form:

1 ~ 1 —cosf sind
i . 2 2
H = 2(Eg + Ee+ Vg + Vee) Id + 5 AE? + vz ( sinfd  cos 6) (2)

with AE = E.+ V.. —E,—V,,, cosf = AE/\/AE? + 4V2, sinf = 2Veg/\/ALE? + 4V2.
The eigen-energies and corresponding eigenstates are:

1 1 ~ 0 0
B = S(Ey+ Bt Vog + Vee) = 5\ JAE? + 4V and |g) = cos 5 |g) —sin[e)  (3)

1 1 ~ 0 0
Ey = 5(Ey+ Ee+ Vg + Veo) + 50 JAE? +4V5 and [e) = cos 7 [e) +sinzg) . (4)

So far the results are exact. Let us now Taylor expand the expressions of the energies
and states as a function of € ~ V,,,,,/|E. — E,|, using v/1+x ~ 1+ x/2 + O(a?):

Bom B, V- — 0 and ) el — =Y eyt (5)
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Here the energies are expanded up to second order in ¢ and the state to first order.
These expressions call for three important remarks (see also Fig. 1a).

1. The first-order corrections on the energy E, . are the average values of the pertur-
bation V' for the unperturbed states.

2. The second-order correction always pushes the coupled states away: they “repel”
each other.

3. The effect of the coupling is to admix the unperturbed states to other states. For
example, one says that the |g) state “acquires some excited state character”. This
is jargon, but worth remembering...It has important applications: giving a lifetime
to a ground state by admixing it with an excited state, enhancing the strength of
interactions between atoms by coupling their ground state to states where they
strongly interact,...

1.2 General case

All quantum physics textbooks derive the corrections to the energies and states as a
power expansion of the perturbation written in the form eV, with € < 1. However the
final results can be inferred from the two-level case of the previous section: if a given
unperturbed state |¢,) of an hamiltonian Hj is coupled to other states |¢y) (including
itself...) by a perturbation V, one adds independently the effect of all two-level systems
(n, k) (see Fig. 1b), leading to the second order expression for the energies:

E:m+mWMM§j%W?&EWM+” (7)
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Figure 1: Time independent perturbation theory. (a) Case of a two-level system. (b)
General case.

with (¢n| V |or) (k] V |6n) = [Vir|?, and the first-order expression for the states.

62 = 16a) + 3 [6x) ¢k'v'¢">+... (8)

k#n

The second-order expression for the states is rarely used. These expressions are worth
remembering. To recall the sign of the denominator F,, — Ej, remember that the per-
turbation always shifts down the energy of the ground state and that Eys — Fj, < 0.

Degenerate case. The above expressions have an obvious flaw when the energies £,
are degenerate, i.e., g, > 1 orthogonal states |¢%) (1 < a < g,) have the same energy:
the denominator of the expression (7) is 0 for some states, and the perturbative approach
is not valid. In this case, the zeroth-order eigenstates and the first-order energies are
obtained by diagonalizing H, + V in each subspace &, associated to the energy F,,.

1.3 Examples (solutions in Appendix)

A. Zeeman effect on an atom. The atomic states are characterized by several
quantum numbers: n, j and m;, the two last ones being associated to the total angular
momentum J = L + S. The atom possesses a magnetic moment g = vJ. Calculate the
energies of the atom placed in a magnetic field B aligned along the z-axis.

B. Non-harmonic oscillator. Consider an oscillator with H = p?/(2m) + mw?z? /2 +
gr'. Remembering that x = zg(a + a™), with zy = \/h/(2mw), calculate the energy

shift of the ground state |n = 0).

C. Stark shift of an atom and polarizability. Place an hydrogen atom in an electric
field E. The hamiltonian is Hg = gZFE. Calculate the energy shift of the ground state,
and the expression of the polarizability «, defined by AFy = —epaE?/2. Calculate the
perturbed ground state, and explain why the atom now has an average dipole moment.

D. Van der Waals interaction between two atoms. Two neutralAatQms interact
by the dipole-dipole interaction described by the hamiltonian: Hy = di.ds./(4megR3)
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(we neglect here the angular dependence). Assume that each atom has two states, for
example 1,,, and 9, as in alkali atoms, separated by an energy hwy. Explain why the
ground-state interaction energy is of the form —Cg/RS and calculate C.

E. Light-shift induced by a laser. A two-level atom with states |g) and |e), separated
by a transition at frequency wy is coupled to a laser field (frequency w), containing N
photons. We consider the (atom + field) system with states |g, N) and |e, N — 1), and
a matrix element AS) coupling the two. Calculate the energy shift of the states as a
function of Q and the detuning A = w — wy for Q < |A].

2 The effective hamiltonian approach

In many situations, the spectrum of the unperturbed hamiltonian consists of manifolds
were states are close in energy, the various manifolds being separated by a large energy
gap, as represented in Fig. 2(a). This situation is often encountered in condensed matter
with energy bands or in atoms with hyperfine and optical transitions. We assume that
the perturbation 1% only has matrix elements between states belonging to different man-
ifolds. We will see that, as a consequence of the perturbation, states within a manifold
get coupled, and that the situation can be described by an effective hamiltonian.
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Figure 2: Effective hamiltonian. (a) The spectrum consists of several manifolds of states
with comparable energies, separated by a gap. (b) Three-state model.

2.1 A three-state model

Consider the simplest situation or two states |1) and |2), with energies F o, and a third
state |e) with energy E. such that |E. — Ey 2| > |E; — Es|, as shown in Fig. 2(b). The
perturbation couples |1) and |2) to |e) with matrix element Vi, and V5.. The matrix of
the hamiltonian is:

E, 0 Vi
H=|0 B, Vil . 9)
Va Ve L.



Any state of the system has the form [¢) = ¢; |1) + ¢2|2) 4+ ¢3]3). Finding the eigen-
energies amounts to solving the system of coupled equations:

E, 0 Vi C1 1
0 E2 ‘/26 Co =F (&) . ( 10)
‘/el Vve2 Ee Ce Ce

Here ¢; 2 depend on c.. Using the third equation

1
- E—-FE,

(Vercr + Veacs) (11)

Ce

and eliminating ¢, in the two first equations, leads to a closed system for (c¢y, ¢o):

[Ve1|? Vie Vs
Ey — 595 T c1\ 1
e © o =F : (12)
VaeVer E, — [Vea| Co Co
E—E. 27 E.-E

In this form, it is not too useful, as E appears on both side in a complicated way. But
now assume you are only interested in the energy shifts of |1) and |2): the perturbation
being weak (|Vie|, [Ve2| < AE), E ~ E1 5 < E,. Hence Eq. (13) becomes:

— |V€1|2 _VleVeQ
B ap L)) B (T (13)
_ VoV E, — Vea| Cy cy)
AE 2 AE

with AE =~ FE, — F) ~ E., — E5. Therefore the elimination of ¢, and the approximation
E ~ E) 5 < E, lead to an effective hamiltonian restricted to the ground state manifold:

Hor =\"_vn’ g _Wap | (14)
AE AE

with AE the energy of the gap between ground and excited states. This effective
hamiltonian couples the two states |1) and |2), with an effective, second-order matrix
element: Vg = —V1.Vio/AE. The energies are also shifted, as they should according to
the discussion of Section 1. Moreover, as |Vi|, |Vea| < AE, |c.| < 1. The jargon used
for what we have done here is: “obtaining an effective low-energy theory”.

2.2 General case

The general procedure to obtain an effective hamiltonian, named the Schrieffer-Wolff
transformation, is quite formal (see e.g. “Photons and Atoms”, Cohen-Tannoudji,
Dupont-Roc and Grynberg, Complement Bj). The result is however a direct gener-
alization of the 3-level model we have just seen. For two states |n) and |m) in the lower
manifold and many states |k) in the higher manifolds (see Fig. 2a), the second-order ef-
fective coupling between |n) and |m) is, with the gap energy AFy ~ Ey,— E, =~ Ey,— E,,;:

1 ~ ~ 1 1 Vi Vie
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2.3 Examples (solutions in Appendix)

F. Raman transition. Consider an atom with two degenerate ground-states |1) and
|2) and an excited state |e) with an energy hwgy. They are coupled to two laser beams
(frequency w, photon numbers Ny, Ny), with respective Rabi frequency ;. and Q.. We
suppose |A| = |w — wp| > Q4. Calculate the coupling between the states |1) and |2).

G. Effective coupling in a double-well. Consider two sites a and b of a double well
potential. We place two different particles 1 and 2 (e.g. a Rb and a Cs atom), each in
the ground state of the wells. They can tunnel with an amplitude J, but placing two
particles in the same well costs an energy U > J due to their interaction. Calculate the
amplitude of the coupling between the states |1:a;2:b) and |2 : a;1 : b).

H. Exchange interaction between two atoms via a cavity mode. We place
two two-level atoms (states |g),|e), transition at wp) in an empty cavity defining an
electromagnetic mode at frequency w. The amplitude for an atom to drop or absorb a
photon in/from the cavity is A€. If the two atoms are initially prepared in |e, g), in an
empty cavity, show that they are coupled to the state |g, €), and calculate the transition
amplitude for |w — wy| > Q.

3 The variational method

If in many cases one does not know the exact solution of a problem, one may guess
what it should look like. For example, a good guess for the ground state wavefunction
of the finite depth square potential is a gaussian, parametrized by its width o. The best
approximation of the ground state is obtained by varying the width in order to minimize
the energy calculated using the trial function, also called an “Ansatz”.

This way of proceeding, named the variational method, relies on the following con-
sideration. Take a trial state |¢) that you think is a reasonable form for the problem
described by an hamiltonian H. Use it to compute the energy E[¢], which is a functional
of the state:

(o] H |¢)

El¢] = ol (16)

Then E[¢] > Ey, the energy of the ground state. Indeed, the state |¢) can be decom-
posed on the eigenstates |¢,) of H (even if you don’t know them...): |¢) = > ¢, |on).
Assuming that |¢) is normalized:

El¢] = Z |Cn‘2En > Eo Z ‘Cn’2 = Ep . (17)

Hence minimizing E[¢p| by varying |¢), one obtains an upper bound of the ground-state
energy. Let us consider a few examples (solutions in Appendix).

I. Ground state of the harmonic oscillator. Take H = —%j—; + mw?r?/2 and
try the normalized wavefunction: ¢,(x) = exp(—%)/ (/7). The energy functional



1s:

h? I 5,

using the gaussian integrals: ffooo exp(—2?/0?)dx = \/mo, and [7_a? exp(—a?/0?)dx =
V703 /2. Find the value of o that minimizes the energy and the Correspondlng energy.

J. Size of a Bose-Einstein condensate. We consider a collection of bosonic atoms,
all with the same wavefunction ¢(x), placed in an harmonic potential. The atoms
interact with each other, and the interaction potential has the form g¢(x)2. The total
hamiltonian is therefore H = ;‘m d; + mw?z?/2 + go(x)?. Use a gaussian ansatz to
estimate the ground state size of the wavefunction. Assume that the kinetic energy is
negligible with respect to the interaction energy and give the condition under which this

is valid.

K. Ground state of He atom. The hamiltonian for the two electrons of the He atoms
restricted to the Coulomb interaction is

2 2 2 2
2e 2e? e

:&———l—p—z———i-— with e? =

2m 1 2m T9 T192 47reg

(19)

It has no analytical solution. One way to calculate the ground state is to use for each
electron an ansatz wavefunction of the form ¥,(r) = \/Z3/(7a3) exp(—Zr/ag), with Z
a variable describing the screening of the nucleus by one of the electron for the other
one. Calculations yield, with |¢12) = |1)s1,¥s2) the two-electron wave function,

Z%e*  27e? e? 57¢e?

<¢12|———|¢12>: o a and <¢12|r—12|¢12>: Sag

(20)
Calculate the approximate ground state energy. The experimental value is —78.6 eV.

L. Linear combination of atomic orbitals. This method is widely used in chemistry
to calculate the molecular orbitals of homo- or hetero-nuclear molecules. Consider for
example the two identical atoms A and B (homonuclear case) described by a total
Hamiltonian H, with atomic orbitals |¢4 g), such that Ey = (¢pa 5| H |¢a p). Construct
the molecular orbital by linear combination: |¢) = ca|pa) + ca|pp). Calling S =
(pa|lpp) and B = (pa| H |pg) = (¢B| H |p4), use the variational method to find the
coefficients ¢4 and cp (supposed real), as well as the energies.

4 Time-dependent perturbation theory

Here, we want to know the time evolution of a system prepared at £ = 0 in an initial
eigenstate |¢;) of Hy associated to the energy E; (i.e., Hy|p:) = E;|¢),) after we turn
on a perturbation V(¢). The perturbation will couple |¢;) to other eigenstates |¢,), so
that the state of the system at ¢ is of the form

= et e o) (21)



The time-evolution of the ¢,’s is ruled by the Schrédinger equation:
. d ~ . w
th— (1)) = (Ho + V(1)) [0(t)) = éult) = — D Var(t)e (i) (22)
k

with wy, = (E, — Ex)/h the Bohr frequencies. So far the expressions are exact, but the
equations are difficult to solve as they are coupled.

Let us now make an approximation. At t = 0, ¢x(0) = dx;, and if the perturbations
Var are weak, we expect that ¢;(t) &~ 1. As a consequence, to first order in V,,; /(hw;),

1

Cn(t) = —

. I o
Vii(t)emit for n #£1i = c,(t) ~ _—/ Vi (8 e omit dt" . (23)
ih ih J,

Hence the transition amplitude from 7 to n is the Fourier transform of the matrix element
coupling the two states, and the corresponding probability is:

2
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Figure 3: Time-dependent perturbation theory. (a) Function sin®z/z? involved in the
transition probability. (b) A single state |i) coupled to a quasi-continuum of states |¢,,).
Only the states |¢,) with an energy close to F; contribute significantly to the transition.

Constant perturbation. We assume first that V is independent of time. Then,

4|‘/m|2 <2 wm't

The transition probability oscillates as a function of ¢ at the Bohr frequency w,;, with an
amplitude 4|V;,;|?/(Awy;)?. The validity of the perturbation approach is consistent with
|Vii| < hwn,;. Also, fixing the duration 7" of the perturbation, the transition probability,
of the form sin? z/z?, is maximal for E, = E; (see Fig. 3a), and PP = |V,;|>T?/h%.
This is valid at short times, for T < h/|V,l.

Sinusoidal perturbation. Frequently, the perturbation has the form V coswt as for a
laser or microwave field sent onto an ensemble of atoms, for example. Then

Vm’ 2 ei(w—&—wm)t -1 ei(wm—w)t -1 2
Prn(t) ~ Vi

26
4h? W + Wy Whi — W (26)
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In the near-resonant case, |w — wp;| < w + wy;, and

Once again, the transition probability is the largest when energy is conserved, i.e.,
E,, = E; + hw, and the width of the resonance fulfills Aw x T ~ 1.

5 “Fermi Golden rule”

Let us calculate the probability P(T') that the systems leaves the state |¢;), irrespective
of the state |¢,) it ends up in. The final states being all orthogonal with each other, we
sum the probabilities

P(T) = 32 Py = 30 Al s len /2 29

2 2 ’
~ I we

for the case of a constant perturbation.

We consider now the situation where many states |¢,) with energy E, ~ E; are
contained within the linewidth Aw ~ 1/T of the excitation (see Fig. 3b). This situation
is called a quasi-continuum and allows one to replace the sum by an integral, the energy
being considered as a continuous variable:

Z - /P(En)dEn ) (29)

where p(FE) is called the density of state and measures the number of states with an
energy between E and E + dE. Thus

P(T) = /dEn P(En)4“;’;l|2 sin (w;n-T/2) ' (30)

wm’

In most cases, the density of state is a slowly varying function with E, and so is the
matrix element V,;, = V. They may therefore be taken out of the integral, as the
sin? z/x? function is peaked around E;:

pir) = 2Ly [ B2 (DL @1

A change in variable z = w,;7/2 and the use of f_oooo sin? z /z*dx = 7 leads to the rate
of transition out of the initial state to a final state with energy Ey = E;.

2m 9
I'=—5==4IVnl'o(E:) . (32)

This last formula is called the ”"Fermi golden rule”. It is used in many contexts when
an initial state is coupled to a continuum, such as in a collision between two particles,
the decay of a nucleus or an atom, the coupling of electrons to phonons in a crystal...
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Warning note: the Fermi rule should not be learned by heart! You should re-derive
its expression for your case, starting from Eqs. (25,26). For example, had we considered
the sinusoidal perturbation V coswt, we would have obtained instead of Eq. (32):

T
D= = L VilPo(Ei+ o) (33)

Besides, we used above the energy as the continuous variable, but in other situations,
you may have to use variables such as the wavevector of a photon emitted by an atom,
or of a phonon in a solid, or an angular momentum associated to the rotation of a
molecule,... However, the structure of the transition rate will always look the same:

2
dr ~ % x [Vig|2 x 8(B; — Ey) x dQ . (34)

Appendix: solutions of the problems

A. Zeeman effect on an atom. The energy of a state |n, j,m;) is E, in the absence
of field. The Hamiltonian of a magnetic moment placed in a magnetic field B is H =
—un-B= —ijB. Hence, the first order shift in energy is AE(M) = —yBm; for a state
In,7,m;). The total energies are thus E, — yBm;, with |m;| < j. Valid as long as
vBj < E,1 — E,.

B. Non-harmonic oscillator. The energy shift of |n = 0) is, to first order, AE®) =
(n= 0] gi* [n = 0) = gai (n = 0| (a+a*)* |n = 0) = 3ga,

C. Stark shift of an atom and polarizability. The wavefunctions of the lowest
states are 15, 925 and 19,. Due to symmetry, the matrix elements of 2 are non zero only
between states of opposite parity, such as s(I = 0) and p(l = 1). Hence, (15| Z [th15) =0
and AEég) = 0. The second order shift of the ground state 1s is

2 2

AE@)_dSp—E with dg, = (V15| g2 [1)9p)
os = i3 sp — 1s| 4 2p/ -

Els - L2p

As By < By, AEg) = —coal? /2 < 0, with a = 2d2, /(€| E1s — ). The ground-state

is modified as:
ds, B

‘1;15> = |?/11s> - m W2p> .

The average dipole is (d) = (15| ¢2 [t1) = €.

D. Van der Waals interaction between two atoms. We consider the two-atom
state [ns, ns), where each atom is in the state |ns). The dipolar interaction hamiltonian
H; couples it to |np, np) separated by an energy 2hwg. The first order shift is again null,
and the second order shift is:

|<np7ner1|ns7ns>|2:_( @, ) 1

AE? = :
5 Ess - Epp 47T€0R3 QhOJO
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It is of the form —Cg/R®, and corresponds to the van der Waals interaction between
two neutral particles.

E. Light-shift induced by a laser. The two states |g, N) and |e, N — 1) are separated
in energy by E, v — Ee ny—1 = h(w — wp). Thus, AEES?E) = +hO?/A.

F. Raman transition. The system involves three partners: the atom and the two
lasers, and the relevant states are thus |1,2,e; Ni; No). The state |1; Ni; Ny) is coupled
to the state |e; N1 — 1; Ny) by the first laser (absorption of a photon). This last state is
then coupled to |2, Ny — 1, Ny + 1) by the second laser (emission of a photon in the laser
mode). The states |1; Ni; No) and |2, N7 — 1, Ny + 1) are still degenerate, and separated
in energy from the state |e; Ny — 1; No) by A(wg — w). The effective coupling between
the states |1) and |2) is thus 1.0 /|A].

G. Effective coupling in a double-well. The swap of the particles involves, for
example, the first particle to tunnel onto site b (amplitude J), leaving site a empty. The
corresponding state |0 : a;1,2:b) has an energy U above the initial state |1:a;2: b)
(assuming U > 0). Then, the second particle tunnels onto site a leading to the state
2:a;1:b) (amplitude J). The amplitude of this coupling is thus J?/U. The swap
can also start with the second particle hopping first onto site a. This gives the same
amplitude J?/U, and thus the total amplitude of the coupling is 2.J2/U.

H. Exchange interaction between two atoms via a cavity mode. We have to
consider the system {atom 1, atom 2, field}. The initial state is |e,g,n = 0), with n
the number of photons in the cavity. The first atom emits a photon in the cavity mode
(frequency w) leading to the intermediate state |g,g,n = 1) with an energy difference
with respect to the first state Ai(w — wp). The photon gets reabsorbed by the second
atom, leading to |g,e,n = 0). The amplitude of the coupling when |w — wp| > € is thus
hQ? [ |w — wyl.

I. Ground state of the harmonic oscillator. Solving dE[c]/do = 0 yields oy =
V h/mw, and the corresponding energy En, = hw/2. In this case, we find the exact
answer, just because we have done the good guess! Had we, for example, used for the trial
function a lorentzian: ¢q(z) ~ 1/(2% 4 a?), we would have found E, = hiw/v2 > Ep.

J. Size of a Bose-Einstein condensate. Using a gaussian Ansatz ¢,(x) and the
gaussian integrals given for the previous example, one finds:

h2

dmo?

(H) =

1
+ mwa —|—g/ o(x 4d:10— —mw?o? + J_ .
4 2mo

T mw?

Neglecting the kinetic energy term and solving d{H)/do = 0 gives oy, = (\/E 9 )1/3,
The assumption is valid when the ratio of the kinetic energy to the interaction energy
is negligible: h?/(mo?) < (g/0wm) or equivalently g/h > \/hw/m
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K. Ground state of He atom. Using the expressions given in the text

7% 276 57e? 2 27
(Hy=2(25 229} 1 229 _ © (9p2 20
2aq ao 8ay 2a, 4

Minimizing with respect to Z gives Z,, = 27/16 < 2: the second electron screens
partially the charge Z, = 2 of the nucleus. The corresponding ground state energy
is —2 x (27/16)? x (e*/2ag) = —77.5 eV. This value is much closer to the measured
one than if we had neglected the interaction between electrons (we would have found
—2 x4 x13.6 =108.8 V).

L. Linear combination of atomic orbitals. The energy functional is

Elca,cp] = (¢l H|¢) _ (i + ch)Eo + 2cacsf
L (plp)y A +ch+2cacS

OF

The minimization implies solving the set of two coupled equation ey = 0,22 = 0.

) dep

This yields the equation (c%cg —c%)(EyS — ) = 0, hence c4 = +cp. The normalisation
condition (p|¢) = 1 gives cap = £1/4/2(1 £S5), and the corresponding energies are
Ey=(Eox£B3)/(1£8).
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